%A Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东) %T Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts %0 Journal Article %D 2020 %J Chin. Phys. B %R 10.1088/1674-1056/ab6c4e %P 37305-037305 %V 29 %N 3 %U {https://cpb.iphy.ac.cn/CN/abstract/article_122276.shtml} %8 2020-03-05 %X Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α, β, and cubic (c) phases, of two-dimensional (2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.