%A Wang Hao (王昊), Han Wei-Hua (韩伟华), Ma Liu-Hong (马刘红), Li Xiao-Ming (李小明), Yang Fu-Hua (杨富华) %T Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures %0 Journal Article %D 2014 %J Chin. Phys. B %R 10.1088/1674-1056/23/8/088107 %P 88107-088107 %V 23 %N 8 %U {https://cpb.iphy.ac.cn/CN/abstract/article_116561.shtml} %8 2014-08-15 %X Single and multiple n-channel junctionless nanowire transistors (JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures (10 K-100 K) and variable drain bias voltages (10 mV-90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage (VFB) at temperatures up to 75 K, which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional (1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.