%A Wei Jian-Qing (魏建清), Geng Hao (耿昊), Xu Lei (徐磊), Wang Lai-Sen (王来森), Chen Yuan-Zhi (陈远志), Yue Guang-Hui (岳光辉), Peng Dong-Liang (彭栋梁) %T Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films %0 Journal Article %D 2014 %J Chin. Phys. B %R 10.1088/1674-1056/23/8/087504 %P 87504-087504 %V 23 %N 8 %U {https://cpb.iphy.ac.cn/CN/abstract/article_116556.shtml} %8 2014-08-15 %X In the present work, a series of [Fe80Ni20-O/SiO2]n multilayer thin films is fabricated using a reactive magnetron sputtering equipment. The thickness of SiO2 interlayer is fixed at 3 nm, while the thickness values of Fe80Ni20-O magnetic films range from 10 nm to 30 nm. All films present obvious in-plane uniaxial magnetic anisotropy. With increasing the Fe80Ni20-O layer thickness, the saturation magnetization increases slightly and the coercivity becomes larger due to the enlarged grain size, which could weaken the soft magnetic property. The results of high frequency magnetic permeability characterization show that films with thin magnetic layer are more suitable for practical applications. When the thickness of Fe80Ni20-O layer is 10 nm, the multilayer film exhibits the most comprehensive high-frequency magnetic property with a real permeability of 300 in gigahertz range.