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The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce. In this work,
the hyperfine-induced Landé g-factors and quadratic Zeeman shift coefficients of the nsnp 3Po

0 clock states for 111,113Cd
and 25Mg were calculated by using the multi-configuration Dirac–Hartree–Fock theory. To obtain accurate values of these
parameters, the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects
on the Zeeman and hyperfine interaction matrix elements, and energy separations were investigated in detail. We also
estimated the contributions from perturbing states to the Landé g-factors and quadratic Zeeman shift coefficients concerned
so as to truncate the summation over the perturbing states without loss of accuracy. Our calculations provide important data
for estimating the first- and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.

Keywords: optical lattice clock, hyperfine-induced Landé g-factor, quadratic Zeeman shift coefficient, Mg
and Cd
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1. Introduction
State-of-the-art optical atomic clocks display an accuracy

of 10−18, and their stability reaches the level of 10−19.[1,2]

Such advanced atomic clocks motivate an optical redefini-
tion of the second[3] and open up new applications, such as
chronometric geodesy,[4,5] tests of fundamental constants,[6,7]

detection of dark matter,[8] or gravitational waves.[9] At this
level of accuracy, one of the limiting systematic uncertainties
is the Stark shift of the clock transitions induced by black-
body radiation (BBR).[1] Although interrogating atoms in a
cryogenic environment[10–14] or in a room-temperature radia-
tion shielded chamber[15] has successfully reduced the BBR-
induced shift, a number of atoms have smaller sensitivities to
the BBR, which could lead to simpler and more precise atomic
clocks. These clocks include optical lattice clocks based
on Hg,[16,17] Mg,[18] Tm,[19,20] and Cd,[21] Al+,[22] Yb+,[23]

In+,[24] and Lu+ [25] ion clocks, Th3+ nuclear clock,[26,27] and
highly charged ion clocks.[28,29]

Among the candidates for optical lattice clocks, Cd op-
tical clock has several desirable attributes. Two fermionic
isotopes, 111Cd and 113Cd, both with ≥ 12% natural abun-
dance, have a nuclear spin of I = 1/2, which precludes ten-
sor light shifts from the lattice light and provides hyperfine-
induced clock transitions with natural linewidths of mHz.[30]

Additionally, spin-forbidden 1S0–3Po
1 transition with a natural

linewidth of 66.6 kHz allows Doppler cooling to 1.58 µK, fa-
cilitating fine control of higher-order lattice light shifts. Along

with its insensitivity to BBR, other favorable properties of cad-
mium allow an optical lattice clock to be accurate, compact
and portable. For Mg optical lattice clock, its quality factor
Q ∼ 7.1× 1018 is 1 or 2 orders of magnitude larger than that
of the Sr, Yb, and Hg lattice clocks.[31–33]

The ns2 1S0–nsnp 3Po
0 transition spectra of the 111Cd and

24Mg optical lattice clocks were obtained.[18,34] The next step
is to measure the frequencies of the clock transitions and eval-
uate their uncertainties. To assess the light shift, the polariz-
abilities of the clock states were accurately calculated.[34–37]

For Zeeman shifts, as we know, hyperfine interaction destroys
the spatial symmetry of electric states, and thus leads to a mix
between the 3Po

0 clock state and other states with the same
parity but different angular momenta. Hence, “hyperfine-
induced” corrections should be considered in evaluating the
Zeeman shifts of clock transitions. To our investigation,
there are many theoretical works on calculating the hyperfine-
induced Landé g-factor and quadratic Zeeman shift coeffi-
cient (QZSC) of the optical clocks based on alkaline-earth-like
atoms or ions. For example, Porsev et al.[33] used a pure ab-
initio relativistic hybrid method combining the configuration
interaction with the single-double coupled cluster approach
to calculate the g-factor of the 6s6p 3Po

0 state of 199,201Hg;
Zhang et al.[38] also calculated the hyperfine-induced Landé
g-factor for the 3Po

0 clock states in 27Al+ ion and 87Sr atom
using the multi-configuration Dirac–Hartree–Fock (MCDHF)
method; Lu et al.[39] also used the MCDHF method to esti-
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mate the QZSC of the 3Po
0 state in 87Sr atom. However, there

is no ab-initio calculation on the hyperfine-induced Landé g-
factors of the 3Po

0 states for Cd and Mg until now. The QZSCs
of the clock states for the two atoms were only calculated by
analytical approximation.[18,36,40] In experiment, Kulosa et al.
measured the QZSC of the 3Po

0 clock state for 24Mg using the
Zeeman spectroscopy of the clock transition.[18] This mea-
surement is about 5% lower than the existing theoretical es-
timation. Therefore, accurate determinations of the first- and
second-order Zeeman shifts of the clock transitions for Cd and
Mg are required. On the other hand, correctly calculating these
values can provide one of the most stringent tests of atomic
structure calculations as it needs accurate atomic wavefunc-
tion.

In this work, we derived expressions for the hyperfine-
induced Landé g-factor and the QZSC of the nsnp 3Po

0
clock state in weak-magnetic-field approximation. Using the
MCDHF theory, we calculated the hyperfine-induced g-factors
and QZSCs of the nsnp 3Po

0 clock states for 111,113Cd and
25Mg. The electron correlations, Breit interaction, and quan-
tum electrodynamical (QED) effects were investigated in de-
tail. In addition, contributions from perturbing states to the
g-factors and QZSCs were estimated. Our calculation is valu-
able to understand the influence of hyperfine interaction on
the clock transitions of Cd and Mg optical lattice clocks and
to evaluate their Zeeman shifts.

2. Theory
2.1. Zeeman effect of hyperfine levels

For an N-electron atomic system with a nonzero nuclear
spin (I ̸= 0), the atomic Hamiltonian can be expressed as

H = H0 +Hhfs, (1)

where the relativistic Dirac–Coulomb Hamiltonian H0 is given
by

H0 =
N

∑
i=1

[
c𝛼i ·𝑝i +(βi −1)c2 +Vnuc(ri)

]
+

N

∑
i> j

1
ri j

, (2)

where c is the speed of light in vacuum, 𝛼i and βi are the 4×4
Dirac matrices, Vnuc(ri) is the monopole part of the electron-
nucleus interaction.

The hyperfine interaction Hhfs is represented as

Hhfs = ∑
k≥1

𝑇 (k) ·𝑀 (k). (3)

Here, 𝑇 (k) and 𝑀 (k) are the spherical tensor operators of
rank k in the electronic and nuclear space, respectively.[41]

k = 1 and k = 2 stand for the magnetic dipole and electric
quadrupole hyperfine interaction. The tiny contribution from

higher-order terms with k > 2 is neglected in this work. The
electronic tensor operators 𝑇 (1) and 𝑇 (2) read

𝑇 (1) =
N

∑
j=1

𝑡(1)( j) =−
N

∑
j=1

iα
(
𝛼 j · 𝑙 j𝐶

(1)( j)
)

r−2
j , (4)

𝑇 (2) =
N

∑
j=1

𝑡(2)( j) =−
N

∑
j=1

𝐶(2)( j)r−3
j . (5)

In the above equations, i is the imaginary unit, α is the fine-
structure constant, 𝛼 j is the Dirac matrix, 𝑙 is the orbital angu-
lar momentum operator, 𝐶(1) and 𝐶(2) are the spherical tensor
operators.

Hyperfine interaction leads to coupling between elec-
tronic angular momentum 𝐽 and nuclear spin 𝐼 to total an-
gular momentum 𝐹 , i.e., 𝐹 = 𝐼 +𝐽 . The wave function of
the atomic system |FMF⟩ is expressed as

|FMF⟩= ∑
Γ ′,J′

dΓ ′,J′ |ϒΓ
′IJ′FMF⟩, (6)

|ϒΓ IJFMF⟩= ∑
MI ,MJ

⟨IJMIMJ |IJFMF⟩|ϒ IMI⟩|Γ JMJ⟩. (7)

Here, |ϒ IMI⟩ and |Γ JMJ⟩ are wave functions of the nucleus
and the electrons in the atom, respectively, in which ϒ and
Γ represent the additional quantum numbers for describing
nuclear and electronic states uniquely. ⟨IJMIMJ |IJFMF⟩ is
the so-called Clebsch–Gordan coefficient. According to the
first-order perturbation theory, hyperfine-induced mixing co-
efficients d(1)

Γ ′,J′ are given by

d(1)
Γ ′,J′ =

⟨ϒΓ ′IJ′FMF|Hhfs|ϒΓ IJFMF⟩
EϒΓ IJFMF −EϒΓ ′IJ′FMF

, (8)

where the prime stands for the perturbing states. The matrix
elements for the magnetic dipole and the electric quadrupole
hyperfine interactions are

⟨ϒΓ IJFMF|𝑇 (1) ·𝑀 (1)|ϒΓ
′IJ′FMF⟩

= (−1)I+J+F
{

I J F
J′ I 1

}√
2J+1

√
2I +1

×⟨Γ J‖𝑇 (1)‖Γ
′J′⟩⟨ϒ I‖𝑀 (1)‖ϒ I⟩, (9)

⟨ϒΓ IJFMF|𝑇 (2) ·𝑀 (2)|ϒΓ
′IJ′FMF⟩

= (−1)I+J+F
{

I J F
J′ I 2

}√
2J+1

√
2I +1

×⟨Γ J‖𝑇 (2)‖Γ
′J′⟩⟨ϒ I‖𝑀 (2)‖ϒ I⟩. (10)

The nuclear matrix elements ⟨ϒ I||𝑀 (1)||ϒ I⟩ and
⟨ϒ I||𝑀 (2)||ϒ I⟩ are related to nuclear magnetic dipole mo-
ment µI and electric quadrupole moment QI .[42]

The Zeeman interaction between an atom and external
magnetic field 𝐵 can be written as[43,44]

Hm =−𝜇(1) ·𝐵+Hnuc
m . (11)

The electronic tensor operator 𝜇(1) is given as

𝜇(1) =−1
2

[
𝑁 (1)+∆𝑁 (1)

]
, (12)
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𝑁 (1) =
N

∑
j=1

𝑛(1)( j) =−
N

∑
j=1

i
α

(
𝛼 j · 𝑙 j𝐶

(1)( j)
)

r j, (13)

∆𝑁 (1) =
N

∑
j=1

∆𝑛(1)( j) =
N

∑
j=1

(gs −2)β j𝛴 j, (14)

where 𝛴 j is the relativistic spin-matrix and gs = 2.00232 the
g-factor of the electron spin corrected by the QED effects.

In the weak-magnetic-field approximation, the total an-
gular momentum F is still a good quantum number for the
atomic system, and the first-order energy shift of a given hy-
perfine level |FMF⟩ can be calculated by

∆E(1) =
1
2
⟨FMF|N(1)

0 +∆N(1)
0 |FMF⟩B+ ⟨Hnuc

m ⟩

= gFµBMFB+ ⟨Hnuc
m ⟩. (15)

Here, the Bohr magneton µB (= eh̄/2me) is equal to 1/2 in
atomic unit. Substituting Eq. (6) into the equation above, the

Landé g-factor can be written as

gF ≈
⟨ϒΓ IJFMF|N(1)

0 +∆N(1)
0 |ϒΓ IJFMF⟩

MF

+2 ∑
Γ ′,J′

d(1)
Γ ′,J′

⟨ϒΓ IJFMF|N(1)
0 +∆N(1)

0 |ϒΓ ′IJ′FMF⟩
MF

= g0 +δg(1)hfs . (16)

The last term δg(1)hfs represents the hyperfine-induced Landé g-
factor.

For an atomic state |FMF⟩ with quantum number J = 0,
the second-order Zeeman shift arises from levels separated in
energy by the fine-structure splitting, opposed to the more tra-
ditional case of alkali-metal(-like) atoms where the second-
order shift arises from nearby hyperfine levels.[45] Therefore,
the second-order Zeeman shift of |FMF⟩ is given by

∆E(2) = ∑
J′

∑
F ′

∣∣∣⟨γΓ ′IJ′F ′MF|N(1)
0 +∆N(1)

0 |γΓ IJFMF⟩B+ ⟨Hnuc
m ⟩

∣∣∣2
E(γΓ IJFMF)−E(γΓ ′IJ′F ′MF)

. (17)

In the above equation, the contributions of different hyperfine
levels in the perturbing states were considered. Accordingly,
the quadratic Zeeman shift coefficient is

C(2) = ∑
J′

∑
F ′

∣∣∣⟨γΓ ′IJ′F ′MF|N(1)
0 +∆N(1)

0 |γΓ IJFMF⟩
∣∣∣2

E(γΓ IJFMF)−E(γΓ ′IJ′F ′MF)
. (18)

The Zeeman matrix elements between hyperfine states as men-
tioned above are

⟨ϒΓ IJFMF|N(1)
0 +∆N(1)

0 |ϒΓ
′IJ′FMF⟩

= (−1)I+J′+1+F MF

√
2F +1

F(F +1)

{
J F I
F J′ 1

}√
2J+1

×⟨Γ J||𝑁 (1)+∆𝑁 (1)||Γ ′J′⟩, (19)

⟨ϒΓ IJFMF|N(1)
0 +∆N(1)

0 |ϒΓ
′IJ′F −1MF⟩

= (−1)I+J′+1+F

√
F2 −M2

F
F

{
J F I

F −1 J′ 1

}√
2J+1

×⟨Γ J||𝑁 (1)+∆𝑁 (1)||Γ ′J′⟩, (20)

where J′ = J−1, J, J+1.

2.2. Hyperfine-induced Landé g-factor and QZSC of nsnp
3Po

0 clock state

For the nsnp 3Po
0 clock state of Cd and Mg atoms, only

the adjacent 3Po
1 and 1Po

1 states in the same configuration were
considered as perturbing states, and neglecting others because
of their fractional contribution due to large energy intervals.
For instance, the contributions from states above 1Po

1 for the

hyperfine-induced g-factor and QZSC of the 3Po
0 clock state in

Mg were estimated to be less than 8×10−10 and 5×10−7. For
Cd, their contributions were less than 7×10−7 and 4×10−4,
respectively. Therefore, the hyperfine-induced Landé g-factor
of the 3Po

0 clock state can be expressed as

δg(1)hfs(
3Po

0 ) ≈ 2

[
⟨3Po

0 FMF|N(1)
0 +∆N(1)

0 |3Po
1 FMF⟩

MF

×
⟨3Po

1 FMF|Hhfs|3Po
0 FMF⟩

E(3Po
0 )−E(3Po

1 )

+
⟨3Po

0 FMF|N(1)
0 +∆N(1)

0 |1Po
1 FMF⟩

MF

×
⟨1Po

1 FMF|Hhfs|3Po
0 FMF⟩

E(3Po
0 )−E(1Po

1 )

]
. (21)

Similarly, the expression of QZSC is given by

C(2)(3Po
0 ) = ∑

F ′

[∣∣∣〈3Po
1 ,F

′MF

∣∣∣N(1)+∆N(1)
∣∣∣3Po

0 ,F,MF

〉∣∣∣2
E(3Po

0 )−E(3Po
1 )

+

∣∣∣〈1Po
1 ,F

′MF

∣∣∣N(1)+∆N(1)
∣∣∣3Po

0 ,F,MF

〉∣∣∣2
E(3Po

0 )−E(1Po
1 )

]
. (22)

From Eqs. (19) and (20), the magnetic matrix element between
states with the same F values depends on MF, while that with
∆F = 1 depends on absolute value of MF. Therefore, the value
of the QZSC is MF-dependent.
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2.3. The MCDHF theory

In the MCDHF method, the wave functionΨ(Γ PJMJ) for
an atomic state is expressed as a linear combination of config-
uration state functions (CSFs) Φ j(γ jPJMJ) with the same par-
ity P, total angular momentum J and its projection quantum
numbers MJ , i.e.,

Ψ(Γ PJMJ) =
N

∑
j

c jΦ j(γ jPJMJ), (23)

where c j represents the mixing coefficient corresponding to
the j-th configuration state function, and γ stands for other ap-
propriate quantum number of the CSF. The CSFs Φ j(γ jPJMJ)

are built from sums of products of the one-electron Dirac or-
bitals

φ(r,θ ,ϕ,σ) =
1
r

(
P(r)χκm(θ ,ϕ,σ)

iQ(r)χ−κm(θ ,ϕ,σ)

)
, (24)

where P(r) and Q(r) are the radial wavefunctions. The co-
efficients c j and the radial parts of the one-electron orbitals
are optimized simultaneously in the self-consistent field (SCF)
procedure. The SCF radial equations to be iteratively solved
are derived from the application of the variational principle
on a weighted Dirac–Coulomb energy functional of the tar-
geted atomic states according to the extended optimal level
scheme.[46] Once a radial orbital set has been determined,
the relativistic configuration interaction (RCI) computation in
which only the expansion coefficients are varied can be carried
out to capture more electron correlations. The Breit interaction
and QED corrections can also be included in the RCI compu-
tation.

3. Calculations and results
3.1. The case of 25Mg

Our calculation was started in the Dirac–Hartree–Fock
(DHF) approximation. The occupied orbitals in the reference
configuration 1s22s22p63s3p, or called spectroscopic orbitals,
were optimized and kept frozen. Subsequently, the correla-
tion between the 3s and 3p electrons in the valence subshells,
and the correlation between these two electrons and those in
the core shells were considered in the SCF procedure. The
former is referred to as the valence–valence (VV) correlation
and the latter as the core–valence (CV) correlation. The VV
and CV were accounted for by CSFs generated by single (S)
and double (D) replacements of the occupied orbitals with vir-
tual orbitals. The SD-excitation is restricted that at most one
electron is excited from the core shells. The virtual orbitals
were added layer by layer up to n = 13 and l = 5. Each layer
consists of orbitals with different orbital angular momenta, for
example, the first layer of virtual orbitals is {4s,4p,3d,4f}.

Only the last added virtual orbitals were variable in the SCF
calculations. This computational model is labeled as VV + CV.
To raise computational efficiency, the CSFs which do not in-
teract with the reference configurations were excluded.[47,48]

The CC electron correlation in the n = 2 shell, labeled as CC2,
was further taken into account in the RCI computation. The
CSFs produced by exciting one and two electrons from the
n = 2 shell to all virtual orbitals were added into the VV + CV
model. The MR-SD approach[49] was adopted to consider
the higher-order electron correlations among the n = 2 and 3
shells. The MR set is composed of {2s22p63s3p; 2s22p63p3d;
2s22p63s4p; 2s22p63d4p; 2s22p64s4p; 2s22p63p4s}. The SD
excitations were allowed from the MR configurations to six
layers of virtual orbitals. This model is marked as MR-6. Fi-
nally, the Breit interaction and QED corrections were evalu-
ated based on the MR-6 model. We used the GRASP2018[50]

and HFSZEEMAN[44] packages to perform our calculations.
In Table 1, we present the Landé g-factors of the

3s3p 3,1Po
1 and 3Po

2 states for bosonic Mg atom in different
computational models. According to the non-relativistic g-
factor formula

gNR = 1+
J(J+1)−L(L+1)+S(S+1)

2J(J+1)

in the LS coupling scheme, the g-factors of the states 1Po
1 , 3Po

1 ,
and 3Po

2 are 1, 1.5, and 1.5 respectively. Comparing these val-
ues with the DHF results, we found that the one-electron rela-
tivistic effect is less than 0.002% for the g-factors of the three
states. Our results of the 3s3p 3Po

1 and 1Po
1 states agree with the

measurements[51,52] although the precise of the measurements
were not so good.

Table 1. The g-factors of the 3s3p 3,1Po
1 and 3Po

2 states for bosonic Mg.

Model g(3Po
1 ) g(1Po

1 ) g(3Po
2 )

DHF 1.499972 0.999985 1.499976
VV+CV 1.498964 0.999990 1.499969

CC2 1.499967 0.999987 1.499972
MR-6 1.498965 0.999990 1.499971

Breit+QED 1.499966 0.999990 1.499971
NR 1.5 1.0 1.5

Lott et al.[51] 1.50
Briand and Solanki[52] 1.00

In Table 2, we present the matrix elements of the Zee-
man and hyperfine interactions, ⟨3Po

0 || − 𝜇(1)||3,1Po
1 ⟩ and

⟨3,1Po
1 ‖𝑇 (1)‖3Po

0 ⟩, energy separations ∆E(3,1Po
1 −3Po

0 ) as func-
tions of the computational models for 25Mg. As mentioned
above, we removed those CSFs not interacting with the refer-
ence configurations for computational efficiencies when calcu-
lating the hyperfine interaction and Zeeman matrix elements.
However, the corrections from these removed CSFs must be
considered for the energy separations.[53] From the table, it
can also be seen that the VV and CV electron correlations
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make dominant contributions to the physical quantities un-
der investigation. The CC electron correlation effects are tiny
compared to the VV and CV correlations. The higher-order
electron correlation makes a great contribution to the energy
gap between the 3Po

0 and 3Po
1 states and makes our calculated

fine-structure splitting in agreement with the NIST value.[54]

The Breit interaction and QED corrections are also signifi-
cant to improve the fine-structure splitting between the two
states. The off-diagonal hyperfine interaction matrix elements
obtained with the final model are about 4% lower than the
other theoretical results given by Andersson et al.[55] To deter-
mine the off-diagonal hyperfine interaction matrix elements,
we also calculated the hyperfine interaction constants A of the
3Po

1 and 1Po
1 states for 25Mg (A(3Po

1 ) = −143.16 MHz and
A(1Po

1 ) = −8.91 MHz) which are in agreement with the ex-
perimental measurement A(3Po

1 ) =−144.977(5) MHz.[56]

Using the calculated results presented in Table 2, the
hyperfine-induced Landé g-factor δg(1)hfs and QZSC C(2) of
3s3p 3Po

0 clock state for 25Mg were calculated and shown in
Table 3. From the table, it can also be seen that the VV and
CV electron correlations make dominant contributions to the
two parameters. As mentioned above, the higher-order elec-
tron correlation makes our calculated fine-structure splitting
closer to the NIST value.[54] This makes the contributions of
the higher-order electron correlation to the Landé g-factor and
QZSC C(2) of the 3s3p 3Po

0 state comparable to that of the

VV and CV correlations. Furthermore, we found that the
Breit interaction and QED corrections contributed approxi-
mately 7% to both the Landé g-factor and QZSCs. Our com-
putational uncertainty comes from the rest of electron corre-
lations such as those related to the innermost 1s electrons,
which was estimated to be about 1.8× 10−5 for the g-factor
and 1× 10−3 for the QZSCs. The uncertainties of energy in-
tervals lead to changes of the g-factor and QZSCs by about
3× 10−6 and 1. Thus, choosing the larger one of the above
two sources, the final uncertainties of the calculated hyperfine-
induced Landé g-factor and QZSCs are obtained as 1.8×10−5

and 1. Taichenachev et al.[18,40] also estimated the value of the
QZSC of 3s3p 3Po

0 state for 24Mg as −217(11) MHz/T2 by an
analytical method. In the analytical work, the reduced ma-
trix element of the Zeeman interaction ⟨3Po

0 || −𝜇(1)||3Po
1 ⟩ =√

2µB ≃−0.707 a.u. is about 0.2% lower than our result. Our
calculated result of QZSC for 3s3p 3Po

0 , |MF| = 5/2 state is
perfectly in agreement with the analytical result. But the au-
thors did not give the details on estimating the theoretical un-
certainty. Our value is about 5% larger than the experimental
result −206.6(2.0) MHz/T2 [18] which is measured by the Zee-
man spectroscopy of the clock transition. The measured value
is in the error limit of the above analytical work. Therefore, we
call for more theoretical and experimental works on estimating
the second-order Zeeman shift.

Table 2. Matrix elements (in atomic unit a.u.) of Zeeman and hyperfine interactions, ⟨3Po
0 ||−𝜇(1)||3,1Po

1 ⟩ and ⟨3,1Po
1 ‖𝑇 (1)‖3Po

0 ⟩, energy intervals (in atomic
unit a.u.) ∆E(3,1Po

1 −3 Po
0 ) for 25Mg. Other theoretical and experimental results are also presented for comparisons. Numbers in square brackets stand for the

power of 10.

Zeeman Hyperfine ∆E

Model ⟨3Po
0 ||−𝜇(1)||3Po

1 ⟩ ⟨3Po
0 ||−𝜇(1)||1Po

1 ⟩ ⟨3Po
1 ||𝑇 (1)||3Po

0 ⟩ ⟨1Po
1 ||𝑇 (1)||3Po

0 ⟩ 3Po
1 −3Po

0
1Po

1 −3Po
0

DHF −7.0874[−1] 6.172[−4] 3.137[−2] 2.319[−2] 9.637[−5] 9.479[−2]
VV+CV −7.0873[−1] 1.139[−3] 3.748[−2] 2.989[−2] 6.078[−5] 6.165[−2]

CC2 −7.0873[−1] 1.036[−3] 3.693[−2] 2.884[−2] 6.031[−5] 7.265[−2]
MR-6 −7.0874[−1] 1.065[−3] 3.582[−2] 2.884[−2] 9.903[−5] 6.156[−2]

Breit+QED −7.0874[−1] 1.006[−3] 3.584[−2] 2.886[−2] 9.209[−5] 6.154[−2]
others

Andersson et al.[55] 3.739[−2] 3.009[−2]
NIST[54] 9.140[−5] 6.015[−2]

Table 3. The calculated hyperfine-induced Landé g-factor δg(1)hfs and QZSC C(2) (MHz/T2) of 3s3p 3Po
0 clock state for 25Mg (Iπ = 5/2+ and µI =−0.85545[57]).

Numbers in square brackets stand for the power of 10 and in parentheses for the uncertainties.

C(2)

Model δg(1)hfs |MF|= 5/2 |MF|= 3/2 |MF|= 1/2

DHF −3.62[−4] −206 −151 −124
VV+CV −6.86[−4] −327 −240 −196

CC2 −6.81[−4] −330 −242 −198
MR-6 −4.03[−4] −201 −147 −121

Breit+QED −4.33(18)[−4] −216(1) −158(1) −130(1)
others

Taichenachev et al.[18,40] −217(11)
Kulosa et al.[18] −206.6(2.0)
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3.2. The case of 111,113Cd

In the case of Cd, we also started from the DHF calcula-
tion to optimize the spectroscopic orbitals occupied in refer-
ence configuration 1s22s22p63s23p63d104s24p64d105s5p. 5s
and 5p were regarded as the valence orbitals and others as the
core. Following that, the VV and CV electron correlations
were taken into account in the SCF procedure. In the SCF
calculation, the occupied shells were opened successively for
substitutions into the virtual set, starting with 4spd, followed
by 3spd, and then by 2sp and 1s. Meanwhile, the virtual orbital
was added layer by layer, and only the added virtual orbitals
were variable. In order to fully consider the VV and CV cor-
relations, the virtual orbitals were augmented to n = 12, and
l = 5 to make sure the convergence of parameters under inves-
tigation. Each layer consists of orbitals with different orbital
angular momenta, for example, the first layer of virtual or-
bitals is {6s,6p,5d,4f} in this case. The computational model
is labeled as VV+CV. The orbital set obtained in the VV+CV
model was used for the subsequent RCI calculation.

The CC electron correlation related to the n = 4 shell was
estimated with the CSFs generated by SD excitations from
the n = 4 core shell to the full layers of the virtual orbitals.
This computational model is marked as CC4. Furthermore,
the MR–SD approach was applied to estimate the higher-order
electron correlation effects among the n = 4, 5 shells. The MR
configuration set was formed by selecting the dominant CSFs
in the CC4 model, that is, 4s24p64d105s5p, 4s24p64d85s5p5d2,
4s24p64d105p6s, 4s24p64d105p5d, and 4s24p64d105p6d. The
SD excitations were allowed from the MR configurations to
four layers of virtual orbitals. This model is marked as MR-4.
Finally, the Breit interaction and QED corrections were evalu-
ated based on the MR-4 model.

In Table 4, we present the Landé g-factors of the 5s5p
3,1Po

1 and 3Po
2 states for bosonic Cd atom in different compu-

tational models. The non-relativistic results are also shown.
From the table, it was found that the one-electron relativistic
effect is 0.034% for the g(3Po

1 ), 0.043% for the g(1Po
1 ), and

0.035% for the g(3Po
2 ). Moreover, it is worth to know that the

contribution of the CC correlation among the n = 4 shell and
higher-order correlations to the g-factors is comparable with
those from the VV and CV correlations. In addition, the ef-
fects of higher-order correlations compensate for the CC cor-

relation. Therefore, both of them should be included in our
calculations. The calculated result of g(3Po

1 ) is consistent with
the measurement.[58]

Table 4. The g-factors of the 5s5p 3,1Po
1 and 3Po

2 states for bosonic Cd. The
number in parentheses stands for the uncertainty.

Model g(3Po
1 ) g(1Po

1 ) g(3Po
2 )

DHF 1.499486 1.000427 1.499948
VV+CV 1.498587 1.001375 1.499965

CC4 1.499086 1.000882 1.499967
MR-4 1.498983 1.001028 1.499969

Breit+QED 1.499006 1.001004 1.499968
NR 1.5 1.0 1.5

Kohler and Thaddeus[58] 1.499846(13)

Matrix elements of the Zeeman and hyperfine interac-
tions, ⟨3Po

0 ||−𝜇(1)||3,1Po
1 ⟩ and ⟨3,1Po

1 ‖𝑇 (1)‖3Po
0 ⟩, energy sepa-

rations ∆E(3,1Po
1 −3 Po

0 ) are presented as functions of the com-
putational models for 111,113Cd in Table 5. From the table,
it can also be seen that the VV and CV electron correlations
make dominant contributions to the physical quantities under
investigation. The contributions of the CC correlation related
to the n = 4 core shell and its corresponding higher-order
electron correlations on the magnetic interactions are about
half of that of the VV and CV correlations. But for the hy-
perfine interactions, their contributions are even smaller. To
determine the off-diagonal hyperfine interaction matrix ele-
ments, we also calculated the hyperfine interaction constants
of the 3Po

1 and 1Po
1 states for 111,113Cd (A(3Po

1 ) =−4028 MHz
and A(1Po

1 ) = 130 MHz for 111Cd, A(3Po
1 ) = −4214 MHz

and A(1Po
1 ) = 136 MHz for 113Cd) which were in agree-

ment with the experimental measurements.[59–62] Moreover,
the CC correlation related to the n = 4 core shell and its cor-
responding higher-order electron correlations make the cal-
culated fine-structure splitting ∆E(3Po

1 −3Po
0 ) agree with the

NIST value[54], but deviate the energy interval between 1Po
1

and 3Po
0 from the NIST value by 8%. This deviation is at-

tributed to the so-called LS-term dependence of the 5p valence
orbital. To improve this energy interval, one would optimize
3P and 1P terms separately. Nevertheless, the resulting orbital
bases for these two terms are non-orthogonal with each other.
Furthermore, the off-diagonal Zeeman and hyperfine interac-
tion matrix elements cannot be dealt with by using the standard
Racah technique.

Table 5. Matrix elements (in unit a.u.) of Zeeman and hyperfine interactions, ⟨3Po
0 || −𝜇(1)||3,1Po

1 ⟩ and ⟨3,1Po
1 ‖𝑇 (1)‖3Po

0 ⟩, energy intervals (in unit a.u.)
∆E(3,1Po

1 −3Po
0 ) for 111,113Cd. Numbers in square brackets stand for the power of 10.

Zeeman Hyperfine ∆E

Model ⟨3Po
0 ||−𝜇(1)||3Po

1 ⟩ ⟨3Po
0 ||−𝜇(1)||1Po

1 ⟩ ⟨3Po
1 ||𝑇 (1)||3Po

0 ⟩ ⟨1Po
1 ||𝑇 (1)||3Po

0 ⟩ 3Po
1 −3Po

0
1Po

1 −3Po
0

DHF −7.0832[−1] 1.47[−2] 2.4547[−1] 1.7201[−1] 2.352[−3] 9.641[−2]
VV+CV −7.0768[−1] 3.33[−2] 3.1358[−1] 2.2028[−1] 2.246[−3] 6.247[−2]

CC4 −7.0804[−1] 2.53[−2] 2.8232[−1] 1.9691[−1] 2.412[−3] 7.650[−2]
MR-4 −7.0798[−1] 2.72[−2] 2.8646[−1] 2.0505[−1] 2.483[−3] 6.724[−2]

Breit+QED −7.0799[−1] 2.68[−2] 2.8683[−1] 2.0551[−1] 2.451[−3] 6.714[−2]
NIST[54] 2.470[−3] 6.187[−2]
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The calculated hyperfine-induced Landé g-factors and
QZSC C(2) of the 3Po

0 state for 111,113Cd isotopes are displayed
in Table 6. From the table, it can be seen that the calculated
Landé g-factors for 111,113Cd isotopes are different because of
the different nuclear magnetic dipole moments. Similar to the
case of Mg, the 5s5p 3Po

1 perturbing state is also dominant for
the hyperfine-induced g-factors and QZSC. The contribution
from the 5s5p 1Po

1 perturbing state and other higher excited
states is less than 10−7 and 10−4, respectively. The effect of
the Breit interaction and QED corrections is on the level of
1%. We also considered two error sources to estimate the un-
certainty of our calculation in Cd. As is well known, the ef-
fects of neglected CC and higher-order electron correlations
related to n ≤ 3 core shells should be smaller than those from
the outer shells because of the stronger nuclear Coulomb po-
tential in the inner region. The CC electron correlation ef-
fect in the n = 3 shell was estimated to be about 2 × 10−6

and 0.002 for the g-factors and QZSC. Furthermore, the un-
certainties of energy intervals might lead to changes of the
g-factor and QZSC by about 4× 10−6 and 0.06. Therefore,
the final uncertainties are obtained as 4× 10−6 and 0.06 for
the g-factor and QZSC. The less good energy interval between
the 1Po

1 and 3Po
0 states does not impact the final g-factor and

QZSC as the contributions from the 5s5p 1Po
1 perturbing state

and other higher excited states are smaller than the uncertain-
ties. Our calculated QZSC is consistent with the analytical
result −8.0 MHz/T2 given by Porsev and Safronova.[36] The
analytical result is obtained with the same method given by
Taichenachev et al.[18,40]

Table 6. The calculated hyperfine-induced Landé g-factor δg(1)hfs and QZSC
C(2) (MHz/T2) of 5s5p 3Po

0 clock state for 111Cd (Iπ = 1/2+ and µI =

−0.5948861(8)[57]) and 113Cd (Iπ = 1/2+ and µI = 0.6223009(9)[57]).
Numbers in square brackets stand for the power of 10 and in parentheses
for the uncertainties.

δg(1)hfs

Model 111Cd 113Cd C(2)

DHF −4.03[−4] −4.22[−4] −8.45
VV+CV −5.39[−4] −5.64[−4] −8.83

CC4 −4.52[−4] −4.73[−4] −8.24
MR-4 −4.46[−4] −4.66[−4] −8.00

Breit+QED −4.52(4)[−4] −4.73(4)[−4] −8.10(6)
others

Porsev and Safronova[36] −8.0

4. Conclusion
In the weak-magnetic-field approximation, the hyperfine-

induced Landé g-factors and QZSCs of the 3Po
0 clock states

for 111,113Cd and 25Mg were calculated by using the MCDHF
method. The electron correlations, especially the CC and
higher-order electron correlations, were investigated in detail.
Moreover, the Breit interaction and QED effects were consid-
ered to obtain high accurate values of the hyperfine-induced

Landé g-factor and QZSC. Our calculations provide important
data for estimating the first- and second-order Zeeman shift
in evaluating the uncertainty of the Cd and Mg optical lattice
clocks. In addition, combining the hyperfine-induced transi-
tion theory, our calculation is helpful to estimate the transition
rates (natural linewidths) of their clock transitions.
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