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Current-induced multilevel magnetization switching in ferrimagnetic spintronic devices is highly pursued for the
application in neuromorphic computing. In this work, we demonstrate the switching plasticity in Co/Gd ferrimagnetic
multilayers where the binary states magnetization switching induced by spin–orbit toque can be tuned into a multistate
one as decreasing the domain nucleation barrier. Therefore, the switching plasticity can be tuned by the perpendicular
magnetic anisotropy of the multilayers and the in-plane magnetic field. Moreover, we used the switching plasticity of
Co/Gd multilayers for demonstrating spike timing-dependent plasticity and sigmoid-like activation behavior. This work
gives useful guidance to design multilevel spintronic devices which could be applied in high-performance neuromorphic
computing.

Keywords: switching plasticity, compensated ferrimagnet, spin–orbit torque, spike timing-dependent plastic-
ity, sigmoidal neuron, handwritten digits recognition, neuromorphic computing
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1. Introduction
Neuromorphic computing inspired by biological brain is

getting increased attention attributing to ultralow-power com-
pared to the traditional computers.[1–3] The nonvolatile neu-
rons and synapses can process data in situ, which avoids
the unnecessary energy cost of the data movement between
different modules.[4] Besides, neuromorphic computing not
only aims to achieve significant energy saving but also at-
tempts to improve the efficiency during performing complex
tasks including cognition, control, movement, and decision
making.[5,6] Although various artificial neural networks al-
gorithms have been developed in recent years, the lack of
dedicated hardware still limits the application of neuromor-
phic computing.[7] Recently, spintronic devices have exhibited
great potential in neuromorphic computing,[8–19] since they
can simulate the functions of neurons and synapses, such as
nonlinearity,[9] stochasticity[8,20] and nonvolatility.[1,21] More-
over, the fast dynamics[22,23] and virtually unlimited en-
durance make them stand out from other competitors including
phase-change,[24,25] floating gated[26] and resistive memory[6]

devices.
Compensated ferrimagnets offer the combined advan-

tages of both ferromagnets and antiferromagnets, namely, the
rich methods of manipulation and/or detection of their magne-
tization, ultrafast and energy-efficient spin–orbit torque (SOT)

switching.[22,27–29] These advantages make them promis-
ing candidates for neuromorphic computing devices. In
spintronic-based neuromorphic computing, the multilevel
spintronic devices based on domain-wall (DW) motion gen-
erated multi-resistance states have been used to emulate bio-
logical synapses.[30–32] However, the stochastic nature of the
DW pinning and depinning relying on the defects may limit
the performance of the devices. Thus, searching for well-
controlled methods to allow a binary ferrimagnet to realize
tunable current-induced multilevel magnetization switching
behavior is one of the vital issues. Recently, the tunable mul-
tilevel SOT-induced magnetization switching by adjusting the
magnitude of in-plane magnetic field or current pulse with a
built-in in-plane magnetic field has been observed in a fer-
romagnet system which suggests the plasticity of switching
behavior.[18,33] However, as far as we know, few works on
the switching plasticity in ferrimagnets have been reported,[23]

which is certainly an urgent topic to promote the application
process for spintronic-based neuromorphic computing.

In this work, we perform experiments with perpendicu-
lar magnetic anisotropy (PMA) Co/Gd ferrimagnetic multilay-
ers under various AlOx thickness. Both the Co and Gd lay-
ers are atomically thin, and their moments are coupled anti-
ferromagnetically to form an artificial compensated ferrimag-
netic structure. We demonstrate the switching plasticity in the
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Co/Gd compensated ferrimagnetic multilayers, that is, the bi-
nary switching characteristic can be tuned into a multi-state
one as the domain nucleation plays a more dominating role
during the magnetization switching. The magnitude of the do-
main nucleation barrier is dependent on the PMA of the mul-
tilayers and the external in-plane magnetic field. The excel-
lent switching plasticity gives the ferrimagnets great potential
for various neuromorphic computing applications. On the one
hand, we demonstrate the spike timing-dependent plasticity
(STDP) using the multilevel switching of the Co/Gd compen-
sated ferrimagnetic multilayers. On the other hand, we demon-
strate that a three-layers neural network using ferrimagnetic
neurons can well recognize patterns in Modified National In-
stitute of Standards and Technology (MNIST) database with
accuracy more than 97%. Our work could provide useful in-
formation for designing future high-performance spintronic-
based neuromorphic computing devices.

2. Method
The schematic stack structures, as shown in Fig. 1(a), Ta

(1)/Pt (5)/[Co (0.36)/Gd (0.34)]6/Pt (1)/AlOx (t) (thickness in
nm) with t = 0, 0.5, 1, 1.5, and 2.0 were sputtered on Si/SiO2

substrates by direct and alternating voltage sources at room
temperature. The base pressure of the chamber was less than
1×10−8 Torr, and the argon pressure was set as 2 mTorr for
AlOx and 0.8 mTorr for other targets during deposition. Sub-
sequently, the samples were patterned into Hall bars devices
with channel widths of 10 µm by standard photolithography
and Ar-ion etching.

3. Results and discussion
Firstly, we measured the anomalous Hall effect resistance

(Rhall) under an out-of-plane magnetic field (Hz), as shown in
Fig. 1(b). A small current of 0.1 mA was used to measure the
magnetic state of the device. It is worth noting that all samples
with different AlOx thicknesses (t) exhibit square-shaped mag-
netic hysteresis loop, indicating that the magnetization easy
axis is along the z direction. The hysteresis loops show a pos-
itive Rhall polarity, which reflects that the magnetization in the
films is Co-riched since the anomalous Hall effect resistance is
dominated by Co in the Co–Gd system.[34] Notably, the mag-
netic hysteresis loops show a gradual switching behavior with
increasing the thicknesses of the AlOx layer to 2 nm, indicat-
ing the switching plasticity in the Co/Gd multilayers.

Subsequently, the switching plasticity in the Co/Gd mul-
tilayers under various in-plane and PMA field was systemati-
cally investigated in Fig. 2. The pulsed current of width 10 ms
was applied and then we measured the Rhall after each pulse
at a low current of 0.1 mA. Figure 2(a) shows the magnetiza-
tion switching driven by SOT under different in-plane fields

(Hx) for the device with AlOx thickness of 1 nm. The square-
ness and switching ratio (∆RRatio) of magnetization switching
loops decrease with the increase of Hx, and the number of in-
termediate states increases. Here, ∆RRatio is defined as the ra-
tio of current-induced maximum change in Hall resistance to
field-induced maximum change in Hall resistance. This phe-
nomenon is also observed in other samples. Moreover, we set
the magnitude of Hx = 800 Oe in all samples to check the im-
pact of the AlOx thickness, as presented in Fig. 2(b).
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Fig. 1. (a) The schematic Hall device with stack structures of Ta (1)/Pt (5)/[Co
(0.36)/Gd (0.34)]6/Pt (1)/AlOx (t). (b) Anomalous Hall resistance Rhall as a
function of perpendicular magnetic field Hz for various AlOx thickness.

Similarly, the samples with thicker AlOx are inclined
to obtain multilevel magnetization switching behavior with
a lower ∆RRatio under the same in-plane field. The in-
creasing AlOx thickness would reduce the effective PMA
field of the device, which is because the strong interfacial
3d–5d hybridization in Co/Pt is weakened by the Pt/AlOx

interdiffusion.[35,36] Then, we determine the effective PMA
field (Hk) of Ta(1)/Pt(5)/[Co(0.36)/Gd(0.34)]6/Pt(1)/AlOx(t)
by fitting the in-plane field dependence of the in-phase first
harmonic Hall voltage. In addition, the damping-like effective
field of Ta(1)/Pt(5)/[Co/Gd]6/Pt(1) is estimated by harmonic
Hall voltage analysis, and the SOT efficiency is calculated to
be 25 Oe/(1×107 A·cm−2) (see the supporting information for
details). The Hk as a function of the AlOx thickness is sum-
marized in Fig. 2(f), which clearly shows the magnitude of Hk

decreases with increasing the AlOx thickness. The magnetic
moment of the samples with higher ratio of |Hx|/Hk would tilt
away from the z direction corresponding to a larger angle (θM),
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leading to a lower switching ratio in Figs. 2(a) and 2(b). Be-
sides, a fatter switching curve is obtained accompanying with
a lower ∆RRatio (corresponding to a greater tilting angle θM).
Thus, the relationship between the switching behavior and the
tilting angle θM (∝ |Hx|/Hk) needs to be further explored.

Then, we fixed the value of Hx/Hk ≈ 0.5 to check the
impact of Hk on current-induced magnetization switching be-
havior, as presented in Fig. 2(c). The intermediate sates in-
crease with increasing the thickness of AlOx (corresponding to
a lower Hk). However, the switching ratio is roughly the same
for all samples. Then we use ∆I to qualitatively evaluate the
number of the intermediate magnetization states, which corre-
sponds to the current range covering full ∆Rhall, as functions of
Hx and AlOx thickness. As clearly shown in Figs. 2(d)–2(f), ∆I
increases nonlinearly with higher Hx and thicker AlOx, which
also indicates the switching behavior can be tuned by the in-
plane magnetic field and/or effective anisotropy field. The
broader current range accompanied by more multi-resistance
states is useful for neuromorphic computing applications. Be-
sides, the linearity of ∆I regulated by Hx and Hk is summarized
in the supporting information.

In this section, we will go deep into the experimental phe-
nomena and explain the switching plasticity which first shows
sharp switching characteristic (binary state) then tunes to grad-
ual switching one (multilevel) under increasing in-plane field.
In general, magnetization switching takes place through DW
propagation and domain nucleation.[37–39] It was verified ex-

perimentally that magnetic stripes with Néel-type chiral do-
main walls show sharp switching characteristics.[40] Com-
pared to domain wall propagation, the nucleation switching
induced by SOT is prone to provide gradual switching be-
havior, since they naturally form the basis of intermediate
states.[17,33] The domain nucleation can be understood from
an energy perspective. The probability of nucleation is pro-
portional to e−Eb/kBT ,[33] where Eb, kB, and T are the nucle-
ation energy barrier, Boltzmann constant, and the temperature,
respectively. Eb has a spatial distribution across the sample
which follows the normal distribution statistically. A higher
Hk brings a higher energy barrier for domain nucleation while
the in-plane field Hx can reduce the barrier.[33,41] Thus, the
switching behavior depends on the magnitudes of Hk and Hx,
as presented in Fig. 2. Moreover, the switching plasticity can
also be explained by comparing the DW propagation field and
nucleation field (see the supporting information for details).

After systematically studying the dependence of switch-
ing plasticity on the in-plane and PMA field, we then inves-
tigate how to use the plasticity of the magnetization switch-
ing for neuromorphic computing. Artificial neural networks
(ANNs) and spiking neural networks (SNNs) are two impor-
tant and complementary branches in neuromorphic computing
with different advantages in dealing with practical tasks.[42] In
the following section, the multi-level switching devices with
excellent switching plasticity are exploited for both SNNs and
ANNs.
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Fig. 2. (a) Pulsed current-driven Rhall–I SOT switching loops under various Hx in Ta/Pt/[Co/Gd]6/Pt/AlOx (1). Rhall–I SOT switching loops with
different AlOx thickness for Hx = 800 Oe (b) and Hx/Hk ≈ 0.5 (c) respectively. Tunable current range (∆I) versus in-plane field Hx (d) and AlOx
thickness for Hx = 800 Oe (e). (f) AlOx thickness dependence of the current range ∆I and PMA field Hk for Hx/Hk ≈ 0.5. The inset in (d) presents the
current range ∆I we defined.
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A synapse in SNNs builds the connection between the
pre-neuron and post-neuron and its weights are updated when
spikes and/or action potentials from the pre-neuron propa-
gate to the post-neuron through the synapses. Moreover, the
synaptic weight update rule depends on the delays between the
spikes arriving from the pre- and post-neuron, which is known
as STDP found in real biological synapses.[43] Figure 3(c)
shows the dependence of the weight (Rhall) with the ampli-
tude of current pulses in our CoGd-based artificial synapse.
The existence of well-defined current thresholds beyond which
switching between low and high Rhall states occurs making
it possible to implement STDP in our device. Based on the
current pulse I dependence on the Rhall, spikes as shown in
Fig. 3(b) are designed for realizing the STDP in our device.
Before the application of each single spike, a sequence of cur-
rent pulses with decreasing amplitudes and alternating polar-
ities was applied (e.g., +28 mA → −27.5 mA → +27 mA
→ ··· → −1.5 mA→ +1 mA→−0.5 mA) to achieve a zero
Rhall state. When pre- and post-neuron spikes reach the CoGd
multilayers with a delay ∆t, their superposition produces the
waveforms (Ipre − Ipost) displayed in the inset of Fig. 3(d)
(waveforms with various ∆t could be found in the support-
ing information). We measure the change of Rhall produced
by pairs of spike 1 and 2 with the time delay from −12 ms to
12 ms. Finally, the STDP window based on ferrimagnet artifi-
cial synapse is obtained where the weight (|∆Rhall|) decreases
with increasing |∆t|, as shown in Fig. 3(d). It obviously shows
that the form of STDP can be tuned by the shape of spikes. We

note that the symmetry of the STDP form is invariable under
different Hx and Hk as shown in Fig. 2, hence the symmetry of
the spike synapse is also retained. Notably, the performance of
a certain learning procedure is highly dependent on the form of
STDP in a spike neural network. Therefore, the form of STDP
can be used to emulate various types of pre- and post-neuron
activities.[44,45]

On the other hand, the nonlinear switching behavior
of the ferrimagnetic multilayers makes it possible to con-
struct a sigmoid neuron for an artificial neural network. Fig-
ure 4(a) shows the evolution of minor switching loops for
Ta/Pt/[Co/Gd]6/Pt/AlOx(2) under Hx = −500 Oe by limiting
the maximum pulsed current, and the presence of the minor
loops indicates the intermediate magnetization states are non-
volatility. Then we select one of the Rhall–I curves (from
−5 mA to 30 mA) in Fig. 4(a) to construct an artificial sig-
moid neuron as an activation function for neural networks, as
shown in Fig. 4(b). The input X is transformed to a current I
applied into the devices, then Rhall is measured to represent the
output Y . It is worth noting that a single SET pulse is required
if a subsequent current pulse is higher than the previous one
(I > I0), however, an additional RESET pulse before the set
pulse is needed to avoid the minor switching loops, as shown
in Fig. 4(a). A modified sigmoid function is used to fit the
experimental dates: Y = 1/[1+ e−(X−X0)/K ], where K and X0

represent the slope and the rising point of the function, respec-
tively.
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In order to evaluate the performance of the inference us-
ing the sigmoidal compensated ferrimagnetic neural, we con-
struct a feed forward neural network based on gradient descent
algorithm,[17,19] as presented in Fig. 4(c). It consists of three
layers: an input layer of 784 neurons, a hidden layer of 100
neurons and an output layer of 10 neurons. Here, the MNIST
handwritten pattern dataset consisting of labeled 60000 train-
ing examples and 10000 labeled testing samples is utilized as
the written digit dataset. Figure 4(d) shows the recognition ac-
curacy as a function of training iteration for experimental dates
and ideal sigmoid function shown in Fig. 4(b). It is worth not-
ing that our neural network based on Co/Gd multilayers neu-
rons can achieve a high recognition accuracy of 97.7%, which
is very close to the ideal software simulation (97.8%). The

respective values of loss decrease quickly toward saturation,
as shown in Fig. 4(e). Besides, the recognition accuracy is
roughly independent of the in-plane field (see the supporting
information for details). These training results prove the va-
lidity of our spintronic artificial sigmoidal neuron.

4. Conclusion
In summary, we have unambiguously tuned the switching

behavior between binary state and multistate in Co/Gd multi-
layer. We find that the switching plasticity can be controlled
by the nucleation energy barrier. Lowering the PMA and/or
applying an in-plane field can lower the nucleation energy
barrier, it thus can result in multilevel magnetization switch-
ing. We further used the switching plasticity for demonstrat-
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ing neuromorphic computing. We demonstrate that the mul-
tilevel magnetization states in Co/Gd multilayer can not only
act as a synapse to achieve spike timing-dependent plasticity,
but also can as a neuron with sigmoid-like activation behavior.
We have simulated an ANN to perform the pattern recognition
tasks with an accuracy rate over 97%. Thus, the switching
plasticity in compensated ferrimagnets not only provides use-
ful guidance to design multistate spintronic devices, but also
opens the prospective door for future high-performance neu-
romorphic computing.
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