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Predicting essential proteins is crucial for discovering the process of cellular organization and viability. We propose
biased random walk with restart algorithm for essential proteins prediction, called BRWR. Firstly, the common process of
practice walk often sets the probability of particles transferring to adjacent nodes to be equal, neglecting the influence of the
similarity structure on the transition probability. To address this problem, we redefine a novel transition probability matrix
by integrating the gene express similarity and subcellular location similarity. The particles can obtain biased transferring
probabilities to perform random walk so as to further exploit biological properties embedded in the network structure. Sec-
ondly, we use gene ontology (GO) terms score and subcellular score to calculate the initial probability vector of the random
walk with restart. Finally, when the biased random walk with restart process reaches steady state, the protein importance
score is obtained. In order to demonstrate superiority of BRWR, we conduct experiments on the YHQ, BioGRID, Krogan
and Gavin PPI networks. The results show that the method BRWR is superior to other state-of-the-art methods in essential
proteins recognition performance. Especially, compared with the contrast methods, the improvements of BRWR in terms
of the ACC results range in 1.4%-5.7%, 1.3%—11.9%, 2.4%—8.8%, and 0.8%—14.2%, respectively. Therefore, BRWR is

effective and reasonable.

Keywords: PPI network, essential proteins, random walk with restart, gene expression
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1. Introduction

Protein is an important component of all cells and tis-
sues of the human body.!!! Essential proteins are indispens-
able for organisms survival and evolution.?! Essential pro-
teins prediction not only sheds light on revealing the struc-
ture and function of genes, but also provides importance guid-
ance in the study of disease diagnosis and drug targets.’>=! In
biomedicine field, many methods based on biological experi-
ments have been proposed to predict essential protein, such as
single-gene knockout, [6] RNA interference,!”! and conditional
gene knockout.!®) These methods have made great contribu-
tions in helping people understand cells and in research of new
drugs.l’! These traditional experimental procedures can pro-
vide an accurate prediction but suffered from huge cost and
time consuming.

In recent years, a variety of biological datasets, such
as genomics, proteomics, transcriptomics, and gene ontol-
ogy (GO) data have been obtained by high-throughput ex-
periments, for instance, two-hybrid systems, mass spectrom-
etry, and protein micro-arrays. At the same time, centrality-
lethality!'" rule shows that proteins with highly connected
neighbors tend to be essential. Thus, many complex network
centrality methods have been successfully devoted to essential

protein prediction problem, such as degree centrality (DC),!!!]

betweenness centrality (BC),!'? subgraph centrality (SC),!!3!

eigenvector centrality (EC),['#! local average center (LAC),!%]

network centrality (NC),1% and multi-order K-shell vector

fCorresponding author. E-mail: lupengli88@163.com
© 2022 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/1674-1056/ac7al7

(MKV).['71 However, the above-mentioned methods only con-
sider the topology features!'8! of the network and ignore the
inherent biological significance of essential proteins, !°! which
results in undesirable performance. Actually, biological infor-
mation is critical for the identification of essential proteins,
and there are a variety of biological dadasets that can be used.
Therefore, how to integrate the PPI networks and some kinds
of biological dadasets to improve the efficiency and accuracy
of essential proteins prediction is also a challenge. Currently,
some researchers try to use the biological information to es-
sential protein prediction algorithm, such as GO terms, "]
subcellular localization,?!! gene expression sequence,>%23]
protein complexes information,?* and other biological infor-
mation. The GEG!>! method is based on semantic similarity
and gene expression sequence. The united complex centrality
(UC)?*! method considers the number of protein appearances
in the complexes. The LIDC?®) method combines network
local action with protein complexes information. PeC?? and
Wdc?7! integrate network topology characteristics and gene
expression sequence. UDoNC[?®! by integrating the protein
domain data with PPI data improves the efficiency distinctly.
However, it still has large development space for accurately
predicting essential proteins.

As an optimization algorithm, random walk (RW)
has been widely used in link prediction,*! recommender

31]

systems,**1 ranking,! community detection,3>341 and

135

transmission dynamics.*>! The essential proteins prediction
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method EssRank %! was developed based on the PageRank 37!
model, which is a web ranking algorithm based on RW.38] The
DEP-MSB[*! method was designed also based on PageRank,
which integrates a variety of biological information and six
centrality methods. In the traditional random walk, the tran-
sition probability of a walker from the current vertex to the
next vertex is equal. However, due to the complex diversity
of the protein network structure and the protein itself contains
complex biological characteristics, the walker in the transition
process will be affected by the neighbors’ proteins, and not
necessarily an equal probability of movement.!*°! Based on
the above description, we propose a biased random walk with
restart method named BRWR for the prediction of essential
proteins. In algorithm BRWR, first we define a novel simi-
larity adjacency matrix and reconstruct the transition proba-
bility matrix, which makes the walker moved towards similar
neighbors with a high probability from the initial vertex when
walker moves to the adjacent vertices. In addition, we use GO
terms score and subcellular score to calculate the initial prob-
ability vector of the random walk with restart. Finally, when
BRWR process reaches steady state, we can obtain a score vec-
tor for proteins and the top prioritized proteins are regarded as
the candidate essential proteins. To assess the performance of
our algorithm BRWR, we compare our algorithms with other
previous algorithms on protein data set BioGRID, YHQ, Kro-
gan and Gavin. The results through different evaluation mea-
sures indicate that BRWR outperforms the state-of-the-art ap-
proaches with stable performance for identifying the essential
proteins.

2. Related work
2.1. PPI network

The PPI network can be abstracted and formularized as
an unweighted and undirected graph G = (V,E), where V is
the vertex set corresponding to proteins, E is the edges set de-
noting the interactions between proteins. There are n = |V/|
proteins and m = |E| edges in the PPI network. The adjacency
matrix of the PPI network, denoted by A, is the n x n matrix
whose (i, j)-entry is 1if v; ~ v, and it is O otherwise. Let d(v;)
be the degree of vertex v;. D denotes the degree diagonal ma-
trix with diagonal entries d(v;),d(v2),...,d(v,). Let I"(v;) be
the neighbor set of vertex v;, and |I"(v;)| = d(v;).

2.2. Transition probability matrix

Consider a random walk on G: start at a vertex v;; if at the
t-th step the walker is at a vertex v}, it moves to a neighbor of
vl with probability 1/d(v}). Clearly, the sequence of random
vertices (Vi : 7 =0,1,...) is a Markov chain. The transmis-
sion matrix is defined as M = AD~!.13] Give a distribution
P!, the rule of the walk can be expressed by P'*! = M x P'.

The transition matrix of other type random walk, like lazy ran-
dom walk,*!) can be described as M = (1/2)(I + AD™').
In Ref. [34] to calculate M, the authors used normalization
of the matrix (A + I) such that the sum of probability in each
column is 1 and defined M = (I + A)(I +D)~!. Adding an
identity matrix to the adjacency matrix can avoid self-loops in
graph. Therefore, the degree of each vertex is incremented by
1 to provide aperiodicity in the graph. Based on the above de-
scription, we propose a new biased transition probability ma-
trix (B M) in the next section.

3. Method

The random walk with restart (RWR)-based method fully
uses the global topological information of PPI network. In our
paper, first we process a variety of protein biological informa-
tion, use it to judge the similarity between proteins in the net-
work, and reconstruct the transition probability matrix, which
makes the random walk biased, so as to better mine the global
topological properties of proteins. Second, we use GO terms
score and subcellular score to construct the initial probability
vector of RWR. The overall process of the BRWR algorithm
is shown in Fig. 1.

3.1. Similarity transition probability matrix

The traditional adjacency matrix is determined by con-
sidering whether there is an edge between vertices in the net-
work and if a walker selects the neighbors randomly, which
ignores the influence of functionally similar neighbors on ver-
tex. Therefore, we use gene expression sequence and subcel-
lular location information to redefine the transition probability
matrix, which makes the walker tend to its more similar neigh-
bors during random walks.

(i) Gene express similarity

The gene expression data of proteins were divided into
three cycles, each characterized by 12 time points, which is
denoted as T = {g1,82,.--,812,---,824,---,836}» Where T (i)
is the gene expression of a protein at time i (i € [1,36]). We
use 3-0 principle to calculate the threshold, which can be used
to determine whether a protein is active. The 3-c formula for
the threshold can be written as

SP(V) = u(v) +30() <1 _ 1—1—(153(\/)) , )

where ((v) and o(v) are the mean and variance of proteins
gene expression value from time 1 to 36, respectively.

In order to compare the gene expression value of each
time with the threshold, we calculate the mean value of the
gene expression value at 36 time points in 3 cycles. According
to the periodicity of gene expression data, the gene expression
average value ATy at each time point is of the three cycles and
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can be calculated as follows:

T +T(I+12)+T(1+24)
B 3

Then, if the average value A7; of gene expression at time /
is greater than the threshold SP, it is considered to be active

AT, (I€[1,12). @

at time /. For two adjacent proteins to be active at least at one
same time point during the 12 time points, we assume that they

are similar.
Gene expression similiarity Subcellular location similiarity
N | Prowin | g | & || 26 N Protein [, ] s [ si | | s
I | YGLO68W| 16.02 | 6.92 11.56 1 [YGLO6SW| 1 1 1 o ]
2 | YBR230C | 32.02 | 50.93 1542 2 |vBr2soc| 1| o of ..| 0
N | YGLI23W[ 32.11 | 16.60 33.09
N [yoLizswf o o | 1 0
| I I

(ii) Subcellular location similarity

Moreover, in subcellular location information, which
contains 11 subcellular information, including: cytoskeleton,
plasma, nucleus, endosome, extracellular, golgi, mitochon-
drion, peroxisome, endoplasmic, vacuole, cytosol. If two ad-
jacent proteins appear in the same subcellular, we assume that

they have the same function. Thus they are similar.

ROC curves

Histogram methodology ]

[ Transition probability matrix

Biased random
walk with restart
on PPI network

Identify essential
proteins and evaluate
algorithm performance

[ Initial probability vector

Subcellular location scores GO terms scores

Statistical methodology ]

Fig. 1. The overall flow of BRWR.

(1).Gene expressiong similarity

DEODKED MOEE DD

1 YGLO68W 16.02 6.92 .. 15.90 1272 1401 .. 10.53 12.67

2 YBR230C 32.02 5093 .. 14.15 33.12 50.12 ... 1741

N YGL123W 32.11 16.60 34.12 3232 17.12 28.55

41.44 61.72 ..

4476 17.12

IEnmmEEs

. 1156 Calculate mean 1 YGLO68W 13.80 1045 .. 1266
and variance

1543 _ 2 YBR230C 3552 5425 .. 15.66

33.06 N YGLI23W 3639 16.94 31.91

(2).Subcellular location similarity

BIE=S =Y Y e
0 1

OoEm
1 1 0

1 YGLO68W| 1 YGLO68
C;lculﬁtel (;he YGLO68W(S,): plasma
threshol
2 YBR230C 1 0 2 YBR230C 0 0 0 N
YBR230C(S,): plasma
N YGLI23W 1 0 1 N  YGLI23W 0 0 1 0

Fig. 2. The similarity of gene expression and subcellular location.

For example, as shown in Fig. 2, we assume that
YGLO068W and YBR230C are two interacting proteins. Both

YGLO68W and YBR230C are active at AT3.

YGLO068W and YBR230C are located in the same subcel-

Meanwhile,

Thus YGLO68W is similar to YBR230C. In

this paper, we use the value of GS (gene-similar) to indicate

lular plasma.

whether two adjacent proteins have gene expression similar-

ity. If GS;; = 1, we assume that i and j have gene expression
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similarity, and if GS;; = 0, we assume that { and j have no
gene expression similarity. Like gene expression similarity,
we use SS (subcellular-similar) to denote the functional simi-
larity of subcellular location. If SS;; = 1, we assume that i and
J have functional similarity, and if SS;; = 0, we assume that
i and j have no functional similarity. Finally, if two adjacent
proteins are active at least one same point and have the same
function, we will think that they are strong similar. If two ad-
jacent proteins are active at least at one same point or have

Saij,
2aij,
ajj, otherwise.

sdjj =

Definition 2 The similar degree matrix is denoted by
SD ¢ R"™", where sd; ; 1s defined as follows:

N Z?leaij, l:.]7
sdij = { 0. i) @

Definition 3 The transition probability matrix is denoted
by BM € R™", and the equation as follows:

BM = (I+SA)(I+SD)™!, (5)

where each element of BM represents the probability of re-
maining in the current vertex or transiting to its neighbors.

3.2. Initial protein score vector

In this section, we take advantage of the initial protein
scores to denote the initial probability vector of the random
walk with restart. We use GO terms score and subcellular
scores to calculate the initial protein scores.

(i) GO terms score (GOS)

GOS is a biological resource which describes the func-
tional properties of genes. The more the same GO terms the
two interacting proteins have, the more similar their functions
will be. We obtain the relationship between proteins essen-
tiality and GO terms by analyzing the correlation of GO terms
between two interacting proteins. GOS is defined as the sum
of the protein and its neighbors belong to the same cluster.

. |2
<|Go,mco,| ) ©

GOS =
=Y \icoixico;

Jjer(
where GO; and GO; are the GO terms of proteins v; and v},
respectively; |GO;| and |GO| are the numbers of GO terms
annotating of proteins v; and v}, respectively; |GO; N GO;| de-
notes the number of GO terms intersection of GO; and GO);.
(ii) Subcellular scores (SC)
There are 11 subcellular locations, and proteins in differ-
ent subcellular locations have different functions. The number

the same function, we will think that they are similar, If two
adjacent proteins are active at different point and do not have
same function, we will think that they are dissimilar. Based
on the above assumptions, we can calculate the S A (similar
adjacency matrix), S'D (similar degree matrix) and BM (bi-
ased transition matrix). For instance, the similarities of gene
expression and subcellular location are shown in Fig. 2.
Definition 1 The similar adjacency matrix of the network
is denoted by S A € R"", where sqa;; is defined as follows:

if GS=1andSS =1,
if (GS=1and SS =0) or (GS =0 and SS =1), 3)

of proteins in different compartments is different, and the es-
sential proteins in different compartments are also different.
In addition, a protein can present in different compartments at
the same time.*?! The value of SC is calculated by the ratio of
Sc(I) to Scrotals

Se(I)

SC(Vl) B ; Sciotal ’ @
where Sc(I) (I € {1,2,3,...,11}) denotes the number of pro-
teins appearing in the i, subcellular location and I represents
the 11 subcellular, Scyoa denotes the total number of proteins
appearing in all subcellular locations. In this scores vector,
since proteins in different networks are distributed differently
in subcellulars, each network corresponds to one different SC.

Definition 4 The initial scores of proteins is denoted as
IP € R"™!, each element represents the initial scores of a
protein, and ip,, can be calculated by

ipy, = SC(v;)-GOS (). 8)

3.3. Essential proteins prediction based on biased random
walk with restart

RWR is a significant prioritization algorithm,*3 which
has been used for gene as well as protein complex prioritiza-
tion in previous studies.!**31 In the RWR algorithm, random
walks start from the seed vertex and move to the direct neigh-
bors or get back to the seed vertex randomly. RWR can be
denoted as the following formula:

P*'=(1-qa)-M-P' +a-P° 9)

where P is the initial probability vector; P’ is a probabil-
ity vector to reach each vertex at step t (P € R™); « is the
restart probability; and M (M € R™") is the transition ma-
trix, in which M;; denotes the probability from vertex v; transit
to v;. Eventually, the process gets to steady state until condi-
tion ||P"*! — P!|| < & holds.

In a random walk, the transition probability of walker
from the current vertex to the next vertex is equal. Due to

118901-4



Chin. Phys. B 31, 118901 (2022)

the fact the interaction relationship between two proteins in
the protein network is not generated randomly, the transition
process will be affected to a certain extent. The protein itself
has complex biological characteristics, therefore transiting be-
tween vertices is not necessarily an equal probability move-
ment, but a biased movement. Based on the above problems,
we use the proposed B M as the transition probability matrix.
The global algorithm of the RWR model is used to identify

essential proteins, and the ranking scores of proteins can be
calculated by

BR'"'=(1-a)- BM-BR'+a-IP, (10)

where BR! = (BR(v),BR(v,),...BR(v,)), until € meets the
preset conditions, the BRWR process reaches a steady state.
In this paper, we assume € = 107%. Algorithm 1 gives the
description of BRWR.

Algorithm 1 The algorithm of the BRWR.

Input:
1: The data of PPI network G = (V,E);

2: The data of protein complexes C = C;(V(C;),E(C;))|CicG;

3: The data of GO terms GT= (V,g);

4: The data of subcellular location information SC = (V,s).
Output: The sorted value of BR after reaching steady state;

5: for each e(v;,v;) €E in PPI do
Calculate the value of a;; by A;

Calculate the value of sa;; by Eq. (3);
Calculate the value of sd; ; by Eq. (4);

6: end for

N

8: for each v;€G do

: Calculate the similarity transition probability matrix BM by Eq. (5);

Calculate the GOS scores of each protein by Eq. (6);
Calculate the SC scores of each protein by Eq. (7);

Calculate the vector IP by Eq. (8).
9: end for

10: Initialize the vector IP = (ip,1,ipy2;-.-,iPun), sSet a = 0;

11: Initialize the vector BRt = (1,1,...,1);
12: while do||BR!*!-BR!|| > €
Compute BR!**! by Eq. (10);
13: end while
14: repeat
step 12, set a =a+ 0.1;
15: until a =1

16: Sequence proteins according to each elements of BR values that reached steady state;

17: return BR;

4. Datasets and evaluation settings
4.1. Datasets

In order to evaluate the performance of the algorithm
BRWR, we consider the PPI data of saccharomyces cerevisiae
(yeast) protein as one of experimental materials, because this
organism has relative complete, reliable PPI and essential pro-
teins data. We use four sets of PPI network data, includ-
ing YHQ,[46] BioGRID,"! Kroagn, 48] and Gavin.[*®! The
Kroagn, BioGRID and Gavin data are gathered from the Bi-
oGRID database,*! the YHQ data was constructed by Yu et
al.1*9 After removing the multiple edges and self-interactions,
the properties of the network are given in Table 1. The stan-
dard essential proteins data were gathered from four different
databases: MIPS,>% SGD,!*!) DEG,!*?) and SGDP.!?) The
gene expression data were downloaded from GEO (gene ex-
pression omnibus) database.>3! The subcellular location data
were downloaded from COMPARTMENTS database.!>* This

data contains 11 subcellular location information. The GO

terms data were cut-down version of the GO ontologies, avail-
able at (https://www.yeastgenome.org/). [>>]

Table 1. Data details of the three protein networks: YDIP, YHQ, and Kro-
gan, from BioGRID.

Dataset Proteins Interactions Essential proteins
BioGRID 5616 52833 1199
YHQ 4743 23294 1108
Krogan 2674 7075 784
Gavin 1430 6531 617

4.2. Evaluation settings

We compare BRWR with a number of existing methods.
The proteins are ranked by the essentiality predicted by each
method. Then, we select the top 25 percent proteins in the ob-
tained sequence as candidate essential proteins and the remain-
ing 75 percent were selected as candidates non-essential pro-
teins. By comparing the selected top 25 percent proteins with
the standard essential proteins dataset, we can get the number

of candidate essential proteins that are truly identified as the
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essential proteins. True positive (TP) is the number of candi-
date essential proteins correctly identified as essential proteins.
False negative (FN) is the number of candidate essential pro-
teins that were incorrectly identified as non-essential proteins.
False positive (FP) is the number of candidate non-essential
proteins that were misidentified as essential proteins. True
negative (TN) denotes the number of candidate non-essential
proteins correctly identified as non-essential proteins.

5. Results
5.1. Parameter analysis

In our method of BRWR, the adjustment of parameter will
affect the performance of BRWR, there are three parameters:

Table 2. Number of essential proteins predicted by BRWR for different c.

3

Datset o —o—a 0% 15% 20% % '
0 37 156 308 426 530 630 630
01 37 170 310 447 550 660 117

02 36 169 319 460 561 670 67

03 36 166 324 463 571 671 45

04 37 167 332 465 581 671 33
BioGRID 05 37 165 337 470 582 667 26
06 38 167 340 475 588 665 20

07 38 168 341 476 590 665 16

08 37 169 344 475 593 669 12

09 38 173 347 477 590 664 9
138 175 350 480 588 665 1
0 8 107 264 377 469 555 920
01 14 111 254 387 494 576 134

02 16 115 258 391 498 582 73

03 22 115 261 391 505 578 48

04 26 117 262 394 506 582 35

YHQ 05 27 122 266 395 508 581 27
06 26 127 267 397 505 578 21

07 26 127 272 398 503 577 17

08 26 131 273 404 503 577 13

09 25 132 274 405 504 577 10

1 28 156 272 396 502 567 1
0 18 84 165 229 279 324 262

01 25 95 177 249 312 353 90

02 25 99 183 255 313 359 5l

03 25 102 184 257 314 362 37

04 25 103 186 257 317 365 28
Krogan 0.5 24 106 187 262 316 364 23
0.6 24 105 186 261 315 365 18

07 24 105 185 261 315 365 15

08 24 105 186 258 313 363 12

09 24 104 188 255 312 363 9

1 24 104 19 258 316 362 1
0 13 61 105 152 196 237 366
01 13 64 113 165 205 252 104

02 13 64 117 164 212 256 6l

03 13 65 118 165 214 254 42

04 13 65 118 167 219 257 32
Gavin 05 14 64 121 167 220 258 24
06 14 64 121 169 220 259 19

07 14 64 122 171 221 259 15

08 14 64 122 171 220 258 12

09 14 64 122 173 222 257 9

1 14 64 12 172 222 256 1

a, k and t, where « is related to the accuracy of the prediction
results. To investigate the effect of parameter o, we evalu-
ate the prediction accuracy by setting values of o range from
0.1 to 1; k is the top k percent of ranked proteins; ¢ is the
iterations times of biased random walk in which the process
reaches steady state. As shown in Table 2, the iterations time ¢
decreases when « increases. Through comparison, when « is
0.5, 0.8, 0.6 and 0.7, respectively, the algorithm in networks
YHQ, BioGRID, Kroagn and Gavin has best performance.

5.2. Validated by histograms

To verify the performance of BRWR, we compare it with
other algorithms (BC, DC, SC, EC, LAC, UC, NC, PeC, Wdc)
by histograms. First, we calculate the score according to each
method, and rank the proteins in descending order. Then the
top 1%, 5%, 10%, 15%, 20% and 25% proteins are selected as
candidate proteins. Finally, the number of essential proteins in
these candidate essential proteins is determined based on the
standard data set of known essential proteins. The comparison
results are shown in Figs. 3—-6.

Figure 3 shows the prediction results of each method on
the BioGRID dataset. DC, BC, EC, SC, LAC, NC, UC, PeC
and Wdc find out 598, 539, 324, 525, 621, 636, 532, 558
and 621 essential proteins at the top 25% candidates, respec-
tively. Our algorithm BRWR discovers 669 essential proteins.
Compared with other algorithms, the number of essential pro-
teins predicted by BRWR on BioGRID dataset is significantly
higher.

Figure 4 shows the prediction results of each method on
the YHQ dataset. DC, BC, EC, SC, LAC, NC, UC, PeC and
Wdc find out 539, 548, 511, 479, 542, 538, 518, 491 and 538
essential proteins at the top 25% candidates, respectively. Our
algorithm BRWR discovers 581 essential proteins. Compared
with other algorithms, the number of essential proteins pre-
dicted by BRWR on YHQ dataset is significantly higher.

Figure 5 shows the prediction results of each method on
the Krogan dataset. DC, BC, EC, SC, LAC, NC, UC, PeC
and Wdc find out 318, 248, 285, 284, 326, 325, 319, 321 and
333 essential proteins at the top 25% candidates, respectively.
Our algorithm BRWR discovers 365 essential proteins. Com-
pared with other algorithms, the number of essential proteins
predicted by BRWR on Krogan dataset is significantly higher.

Figure 6 shows the prediction results of each method on
the Gavin dataset. DC, BC, EC, SC, LAC, NC, UC, PeC and
Wdc find out 221, 172, 157, 210, 254, 252, 232, 234 and 247
essential proteins at the top 25% candidates, respectively. Our
algorithm BRWR discovers 259 essential proteins. Compared
with other algorithms, the number of essential proteins pre-
dicted by BRWR on Gavin dataset is significantly higher.
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5.3. Validated by six statistical methods

Six statistical methods are a more comprehensive perfor-

mance evaluation method, which are commonly used in clas-

sification tasks. To evaluate the performance of BRWR, we

118901-8

compare each method by using six statistical measures includ-

ing accuracy: ACC= TPJ};%, F-measure: F = —§§}1’§§X,

TP
TP+FP>

value: NPV = %, specificity: SP= %, and sensitivity:

positive predictive value: PPV = negative predictive
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TP

SN= TP+EN"

Table 3. Comparison of results of SN, SP, PPV, NPV, F-measure and ACC.

Dataset Methods SN SP PPV NPV F-measure ACC
DC 0.499 0.804 0.431 0.843 0.427 0.734
BC 0.450 0.790 0.389 0.828 0.417 0.712
EC 0.270 0.753 0.246 0.776 0.257 0.642
SC 0.438 0.788 0.381 0.825 0.407 0.708

BioGRID LAC 0.518 0.816 0.456 0.850 0.485 0.748
0.530 0.814 0.460 0.853 0.493 0.749

ucC 0.443 0.798 0.395 0.828 0.418 0.717
Pec 0.465 0.794 0.402 0.833 0.431 0.718
Wdec  0.518 0.810 0.448 0.849 0.480 0.743
BRWR 0.558 0.822 0.482 0.862 0.517 0.761
DC 0.486 0.812 0.469 0.823 0.477 0.729
BC 0.404 0.786 0.392 0.795 0.398 0.689
EC 0.461 0.812 0.456 0.816 0.459 0.723
SC 0.432 0.808 0.435 0.807 0.433 0.713
YHQ LAC 0.489 0.815 0.474 0.824 0.482 0.732
NC 0.486 0.813 0.470 0.823 0.478 0.730
ucC 0.467 0.810 0.456 0.817 0.461 0.723
Pec 0.442 0.790 0.418 0.806 0.429 0.702
Wde 0486 0.812 0.468 0.823 0.477 0.729
BRWR 0.524 0.822 0.500 0.835 0.512 0.746
DC 0.406 0.814 0.480 0.763 0.440 0.692
BC 0.316 0.777 0.376 0.728 0.344 0.640
EC 0.364 0.796 0.431 0.747 0.394 0.667
SC 0.362 0.795 0.429 0.746 0.393 0.666
LAC 0416 0.817 0.491 0.767 0.450 0.697

Krogan
NC 0.415 0.817 0.490 0.768 0.449 0.697
uc 0.407 0.813 0.480 0.763 0.440 0.692
Pec 0.409 0.816 0.486 0.765 0.444 0.695

Wdec  0.425 0.822 0.504 0.771 0.461 0.704
BRWR 0.466 0.839 0.551 0.787 0.504 0.728
Precision recall
1.0
(a) BioGRID —DC —NC
BC ucC
0.8 — EC — Pec
—SC Wdc
o — LAC — BRWR
Rl
n
3]
&
[a W
0 L L L L
0 0.2 0.4 0.6 0.8 1.0
Recall
1.0 Precision recall
' (c) Krogan —DC —NC
BC ucC
0.8
=}
9 0.6
12}
i3]
&
&g 04
0.2
0
0 0.2 0.4 0.6 0.8 1.0
Recall

Table 3. (Continued).

DC 0.357 0.834 0.623 0.628 0.454 0.626

BC 0.277 0.773 0.484 0.582 0.353 0.557

EC 0.254 0.756 0.445 0.568 0.324 0.538

SC 0.339 0.820 0.592 0.617 0431 0.611

Gavin LAC 0412 0.873 0.713 0.659 0.522 0.672
NC 0.407 0.869 0.705 0.656 0.516 0.668

ucC 0.374 0.845 0.651 0.637 0475 0.641

Pec 0.399 0.863 0.691 0.651 0.506 0.661

Wdc 0.337 0903 0.730 0.639 0461 0.658

BRWR 0420 0.880 0.730 0.664 0.533 0.680

The six statistical indicators of each method are calcu-
lated on BioGRID, YHQ, Krogan and Gavin datasets. As
shown in Table 3, the six index values of our algorithm BRWR
are all higher than those of the compared algorithms. Espe-
cially, the ACC values on BioGRID, YHQ, Krogan and Gavin
datastes are 0.761, 0.746, 0.728, 0.680, respectively.

5.4. Validated by the P-R curve

In essence, our study is a classic unbalanced dichotomy
problem, that is, the proteins in the PPI network are di-
vided into essential proteins and non-essential proteins. The
P-R curve is a performance evaluation method for binary-
classification problems in machine learning, which can easily
assess the performance of the classification ability of BRWR.
Thus we use it to evaluate our algorithm. The x-axis denotes

recall (Recall =

TP
TP+FP

show that there is a superior performance for essential proteins

TPK%) and the y-axis denotes Precision (Pre-

cision =

). The result shown in Fig. 7, the P-R curves

in comparison of BRWR with other algorithms.

Precision recall

1.0
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=
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0
kS
g
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Fig. 7. The performances of BRWR and other nine centrality measures on the BioGRID, YHQ, Krogan and Gavin datasets, validated by P—R curves.
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5.5. Validated by the ROC curve

In addition, the ROC curve is a classic evaluation method.

The x-axis represents the false positive rate, the y-axis repre-

ROC

1.0
(a) BioGRID

0.8

)
2
®
= 0.6
<) 7
= /
Z 04t /f
£ —DC —NC
/ BC UucC
| —EC — Pec
0.2 —SC Wdc
— LAC — BRWR
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0
False postive rate
ROC
1.0
(c) Krogan
0.8}
]
2
I
= 0.6 /
° 4
2
7 0.4k :
g 7. —DC —NC
BC ucC
; — EC — Pec
0.21 —5sC Wdc
! — LAC — BRWR
0 . . . .
0 0.2 0.4 0.6 0.8 1.0

False postive rate

sents the true positive rate, and the area of ROC reflects the
quality of the algorithm. We describe the ROC curve, which
also shows that our algorithm is better than several other algo-
rithms. The result is shown in Fig. 8.

ROC
1.0 .
(b) YHQ =
0.8} =
=
= 0.6} /
: ,/
'43 %
£ 04 / —DC —NC
[/ BC ucC
—EC — Pec
0.2r —8C Wdc
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0 . . . .
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False postive rate
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— LAC — BRWR
O 1 1 1
0 02 04 06 08 1.0

False postive rate

Fig. 8. The performances of BRWR and other nine centrality measures on the BioGRID, YHQ, Krogan and Gavin datasets, validated by ROC curves.

6. Conclusion

The prediction of essential proteins is an indispensable
research for us to know the organisms survival and evolution.
Up to date, many methods have been proposed for predicting
essential proteins. However, it is still of challenge to improve
the prediction accuracy. In this paper, we propose a new algo-
rithm BRWR based on the RWR model for prediction of es-
sential proteins. Firstly, the adjacency matrix is reconstructed
by using gene expression sequence and subcellular location
information, and named as similarity adjacency matrix. The
similarity adjacency matrix is used to construct a biased tran-
sition probability matrix, which makes the process of random
walk biased. In addition, the subcellular scores are fused with
the GO terms information to construct the initialization prob-
ability vector in the BRWR. Experimental results show that
our proposed method has higher accuracy and stable perfor-
mance in predicting essential proteins. The improvements of
BRWR in terms of the average ACC results range in 1.4%-
5.7%, 1.3%-11.9%, 2.4%-8.8%, and 0.8%—14.2%, respec-
tively.
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