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As a classical complex network model, scale-free network is widely used and studied. And motifs, as a high-order
subgraph structure, frequently appear in scale-free networks, and have a great influence on the structural integrity, functional
integrity and dynamics of the networks. In order to overcome the shortcomings in the existing work on the robustness of
complex networks, only nodes or edges are considered, while the defects of high-order structure in the network are ignored.
From the perspective of network motif, we propose an entropy of node degree distribution based on motif to measure the
robustness of scale-free networks under random attacks. The effectiveness and superiority of our method are verified and
analyzed in the BA scale-free networks.
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1. Introduction
Complex network is one of the methods to model and

study the actual complex systems.[1] With the in-depth study
of the related characteristics of complex networks, network
robustness has gradually attracted the extensive attention of
scholars. The so-called network robustness refers to the abil-
ity of the network to maintain the integrity and function of
the original network structure after being subjected to random
failures or deliberate attacks.

According to the current work on network robustness,
the measurement of network robustness is mainly carried out
around nodes. Albert et al.[2] investigated the random at-
tacks and deliberate attacks on nodes in scale-free networks
and random networks, and calculated the change of network
diameter and the largest connected subgraph, and they con-
firmed the strong robustness of scale-free networks to random
attacks and their vulnerability to deliberate attacks. Newman
and Ghoshal[3] randomly removed nodes on real networks of
different scales, and analyzed the robustness of the network
by using the variation of two components in the network.
Clemente and Cornaro[4] proposed to use the eigenvalue of
the Laplace matrix of the network to calculate the Kirchhoff
index,[5,6] then they calculated the effective resistance central-
ity based on nodes and edges respectively according to the
Kirchhoff index, and they used the centrality value to measure
the robustness of the network, and presented different calcula-
tion methods for different types of networks.

For different nodes, the coupling strength of the node it-

self determines its influence on the network robustness, and
nodes with large degrees are more sensitive to random at-
tacks, showed the unity of dynamic robustness and structural
robustness.[7] Kasthurirathna et al.[8] continuously attacked
the scale-free network according to the node degree value,
they used the average path length and clustering coefficient
to measure the robustness. It was confirmed that the aver-
age path length is positively correlated with the network ro-
bustness, and the clustering coefficient is negatively correlated
with the network robustness. Zhou et al.[9] used the Betti
number to calculate the number of structural holes. Through
random attacks and deliberate attacks on the network, it was
found that the number of structural holes can change with the
attack intensity. For power networks[10,11] and urban trans-
portation networks,[12–15] they proved to have the characteris-
tics of the scale-free network and small-world network, that is,
they are robust under random attacks and weak under deliber-
ate attacks. Other researches of network robustness include the
using of node efficiency,[16] R-index,[17] fractal dimension,[18]

natural connectivity[19] to measure the network robustness.
The research process of complex network itself is com-

plex generally. But the research from the low-order perspec-
tive of nodes and edges turns relatively simple. The research
from the high-order perspective can realize the transformation
from low to high complexity, which is the general law of re-
search problems. New rules and new properties can also be
found with the help of high-order structure. For many actual
complex networks, they are usually scale-free, and motifs ap-
pear frequently in the form of high-order structure. Compared
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with nodes, motifs have the characteristics of large number,
complex types and strong correlation, which play a decisive
role in the overall structure and function of the network.[21]

However, previous research work on network robustness ig-
nored the existence of motifs. At the same time, in the actual
complex systems, the probability of random failures is often
higher than that of deliberate attacks. Therefore, we will study
the robustness of scale-free networks from the perspective of
motif, propose an entropy of node degree distribution based on
motif to measure the robustness of different sizes of scale-free
networks under random attacks, and verify its effectiveness
and superiority through experimental analysis.

2. Theoretical basis
2.1. Scale-free networks

The scale-free network[22] is a classical complex network
model, and its node degree distribution function obeys the
power-law distribution, that is, P(k) = Ck−γ , where C is the
scale coefficient, k is the degree value of the node, γ is the
exponent and usually γ ∈ [2,3]. In a scale-free network, the
degree value of most nodes is very small, and a few hub nodes
have large degree value.

In order to realize the construction of scale-free network,
Barabási and Albert[23] proposed a simple and effective con-
struction model — BA scale-free network, that is, on the basis
of a randomly generated small network, BA scale-free network
is generated according to the growth mechanism and prefer-
ence connection mechanism. The growth mechanism refers to
adding a new node to the original network at each time step,
while the preference connection mechanism refers to that the
newly added nodes tend to connect with the hub nodes in the
original network. For a BA scale-free network with N = 100
and M = 3, the generation process is as follows: when a new
node is added to the network, M = 3 edges will be added to the
network until the scale of the network reaches N = 100 nodes.

2.2. Network motif

Motif is a kind of subgraph that appears frequently in
the network. Motif plays a decisive role in the function and
properties in the whole network. Identifying and analyz-
ing motifs is helpful in revealing the dynamic and structural
characteristics of the network. There have been many algo-
rithms for recognizing and detecting the network motif. In this
work, the software FANDOM[24] developed based on the ESU
algorithm[25] is used to mine motifs. According to the number
of nodes contained in the motif (n), the motif can be defined
as an n-order motif. The specific structure of the possible 3rd
motif and the 4th-order motif in the simple undirected network
are shown in Figs. 1 and 2, respectively.

The most important statistical feature of the motif is the
Z-score. The positive or negative Z-score can be used to deter-

mine whether the motif appears in the network. The presence
of the motif can be confirmed only when Z > 0. The value of
Z can be calculated from the following formula:

Z =
Nreal−〈Nrand〉

σrand
, (1)

where Nreal represents the number of times of a specific motif
appears in the actual network, 〈Nrand〉 represents the average
number of times the same motif appears in a random network
of the same size, and σrand represents the standard deviation of
the number of times the motif appears in the random network.

Fig. 1. The third-order motifs of undirected network.

Fig. 2. The fourth-order motifs of undirected network.

3. Entropy of node degree distribution based on
motif
Let the graph G=(V,E) be an undirected and unweighted

network, where V = {v1,v2, . . . ,vN} is a set of nodes in
the network, N represents the total number of nodes, E =

{e1,e2, . . . ,eL} refers to a set of edges in the network, and L
denotes the total number of edges.

The classical node degree value refers to the total num-
ber of edges owned by the node, but this calculation method
ignores the existence of motifs in the network. According to
this, Han et al.[26] proposed a motif-based node degree value,
which is specifically defined as follows: for a network G, let
M be the motif of G, the total number of motif M composed of
node i is defined as the motif-based node degree value of node
i. In this work, the traditional node degree distribution value
is extended to the node degree distribution value based on mo-
tif, and the entropy of node degree distribution based on motif,
that is HM , is further obtained, and its specific expression is

HM =−
max(kM)

∑
kM=0

PM(kM) · log[PM(kM)], (2)

where kM is the node degree value based on the motif, PM (kM)

is the node degree distribution value based on the motif, that
is, the node degree value based on the motif is equal to the
probability of the occurrence of kM . In the following, exper-
imental results will show that the larger the value of HM , the
more robust the network is. In the process of calculation, it
can be found that kM does not change continuously, so it is not
calculated for the case of PM (kM) = 0.
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4. Experiment and analysis
In this work, all experimental networks are undirected and

unweighted. In order to verify the effectiveness of our method,
we will use HM , and some classical robustness metrics, such as
average edge betweenness BG,[18] network efficiency EG,[18]

and network dispersion DG,[27] to analyze the robustness of
BA scale-free networks. At the same time, by analyzing the
computational complexity of different indicators, the superi-
ority of our method is highlighted. The 3rd-order motifs are
used in the experiment unless otherwise specified.

Definition 1 Edge betweenness Be
[27] is one of the crite-

ria to measure edge centrality based on the shortest path, and
its calculation formula is as follows:

Be = ∑
j,k∈V
j 6=k

L jk(e)
L jk

, (3)

where Be represents the betweenness value of edge e, L jk is the
length of the shortest path from node j to node k, and L jk (e)
refers to the length of the shortest path from node j to node k
through edge e.

Definition 2 For the network G, the average edge be-
tweenness BG is one of the indicators to measure the robust-
ness of the network from a local perspective, which is defined
as follows:

BG =
1
m ∑

e∈E
Be, (4)

where m is the total number of edges in network G, E is the
set of all edges in network G, and the smaller the value of BG,
the stronger the robustness of the network is.

Definition 3 For network G, network efficiency EG is
one of the indicators to measure the robustness of the network
from a global perspective, which can be obtained from

EG =
1

n(n−1) ∑
j,k∈V
j 6=k

L jk, (5)

where L jk represents the length of the shortest path from node
j to node k, n is the total number of edges in network G, V

refers to the set of all edges in network G, and the larger the
value of EG, the stronger the robustness of the network is.

Definition 4 For the network G, network dispersion DG

is one of the indicators to measure the robustness of the net-
work from a local perspective, which is defined as follows:

DG = 1−2
∑
j>k

1
L jk

n(n−1)
, (6)

where L jk represents the length of the shortest path from node
j to node k, DG ∈ [0,1], and the greater the value of DG, the
greater the dispersion of the network is and the worse the ro-
bustness of the network.

4.1. Robustness of BA scale-free networks to random at-
tacks

In this subsection, we will use different indicators to mea-
sure the robustness of BA scale-free networks under random
attacks, and analyze the relationship between node degree dis-
tribution function based on motif, HM , and network robust-
ness.

4.1.1. BA scale-free network robustness measurement

In experiment, nine different BA scale-free networks are
generated according to the growth mechanism and preference
connection mechanism. The calculation results of its basic at-
tributes and robustness metrics HM , BG, and EG are shown in
Tables 1–3.

By analyzing the data in Tables 1–3, it can be found that
for BA scale-free networks, when N is the same, the larger
the value of M, the smaller the average edge betweenness
is, the higher the network efficiency, and the greater the en-
tropy of node degree distribution based on motif, that is, the
stronger the robustness of the network is; when M is the same,
the smaller the value of N, the smaller the average edge be-
tweenness is, the higher the network efficiency, and the greater
the entropy of node degree distribution based on motif, the
stronger the robustness of the network.

Table 1. Robustness index of BA scale-free networks (N = 100).

Network parameters BG EG The 3rd-order motif Z-score HM

N = 100, M = 3 43.4261 0.2158 24.8960 1.7415

N = 100, M = 6 18.0780 0.2640 37.5500 3.1540

N = 100, M = 9 11.4286 0.2867 35.7430 3.7778
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Table 2. Robustness index of BA scale-free networks (N = 300).

Network parameters BG EG The 3rd-order motif Z-score HM

N = 300, M = 3 156.6521 0.1737 66.4570 1.3542

N = 300, M = 6 63.6207 0.2150 65.5700 2.8258

N = 300, M = 9 38.5040 0.2390 61.1330 3.6219

Table 3. Robustness index of BA scale-free networks (N = 600).

Network parameters BG EG The 3rd-order par motif Z-score HM

N = 600, M = 3 321.5120 0.1661 73.1460 1.2226

N = 600, M = 6 135.3527 0.1973 72.1990 2.5155

N = 600, M = 9 83.1624 0.2165 67.9660 3.4017
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Fig. 3. Dispersion curves of BA scale-free networks under random attacks (N is the same) for N = 100 (a), 300 (b), and 600 (c).
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Fig. 4. Dispersion curves of BA scale-free networks under random attacks (M is the same) for M = 3 (a), 6 (b), and 9 (c).

In order to analyze the robustness of BA scale-free net-
work under random attacks by using network dispersion, we
use the method of randomly removing nodes to destroy the
network, randomly removing one node each time, conduct-
ing 100 independent experiments on each network, and then
calculating the average value of network dispersion obtained
from 100 independent experiments. The dispersion curves are
shown in Figs. 3 and 4.

In Figs. 3 and 4, the abscissa represents the proportion of
removed nodes, and the ordinate represents the average value
of network dispersion obtained from 100 independent experi-

ments. Since we remove nodes from the network randomly,
when the number of removed nodes is large enough, there
may be only one edge left in the network. Combining with
formula (6), it can be seen that the network dispersion will be-
come 0, which will reduce the average value of network dis-
persion obtained from 100 independent experiments to a cer-
tain extent, that is, the average dispersion of the network will
be infinitely close to 1, but it may not be equal to 1.

In Fig. 3, from the overall change trend of the curve it
follows that for the BA scale-free networks, when the network
scaleN is the same, the larger the number of edges M in the
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preferred connection, the smaller the dispersion in the whole
process of random attacks is, that is, the stronger the robust-
ness of the network is. At the same time, it can be found from
Fig. 4 that for BA scale-free networks, if M in the preference
connection is the same, the smaller the network scale N, the
smaller the dispersion in the whole process of random attacks
is, that is, the stronger the robustness of the network.

The experiment on BA scale-free networks shows that the
measurement results of HM , BG, EG, and DG on network ro-
bustness are consistent with each other, which verifies the ef-
fectiveness of HM in measuring network robustness. That is,
in the BA scale-free network, HM , the entropy of node degree
distribution based on motif can be used as a new network ro-
bustness measurement index.

4.1.2. Analysis of cause for HM change

It can be found from Eq. (2) that HM is related to kM

and PM (kM), the node degree distribution function based on
motif is a comprehensive representation of kM and PM (kM).
Therefore, for BA scale-free networks, we first study the node
degree distribution function based on motif, and then further
analyze the relationship between the node degree distribution
function based on motif and HM .

The node degree based on the motif is a generalization of
the traditional node degree. In the BA scale-free networks, the
traditional node degree distribution function obeys the power-

law distribution. Therefore, it is of research significance to
fit the node degree distribution function based on the motif
according to the power-law distribution and judge whether it
obeys the power-law distribution through the fitting results.

For the nine BA scale-free networks involved in Subsub-
section 4.1.1, we will fit the traditional degree distribution
function and the node degree distribution function based on
the motif by power-law distribution. The curve fitting results
and index calculation values are shown in Figs. 5 and 6.

By observing Figs. 5 and 6, it can be found that in the BA
scale-free networks, like the traditional node degree distribu-
tion function, the node degree distribution function based on
motif can be well fitted by power-law distribution. When N is
the same and M increases gradually, the heavy-tailed distribu-
tion of the node degree distribution function based on the mo-
tif becomes more obvious, that is, the number of nodes with
a larger motif degree becomes larger, resulting in larger HM

and stronger robustness. When M is the same and N increases
gradually, although there is still a heavy-tailed distribution, the
frequency of node degree value based on motif at a small value
will gradually increase, that is, the number of nodes with a
small motif degree value will increase, resulting in smaller HM

and weaker network robustness.
The statistical data shown in Table 4 can be obtained by

combining the entropy of node degree distribution based on
motif with results in Figs. 5 and 6.

M=9 distributed scatter

M=6 distributed scatter

M=3 distributed scatter

M=9, fitting curve,
index: γ=2.688103

M=6, fitting curve,
index: γ=2.505982

M=3, fitting curve,
index: γ=2.484202
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M=6 distributed scatter

M=3 distributed scatter

M=9, fitting curve,
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M=6, fitting curve,
index: γ=2.531813

M=3, fitting curve,
index: γ=2.314038
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index: γ=2.849013

M=6, fitting curve,
index: γ=2.599004

M=3, fitting curve,
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(a) (b) (c)

Fig. 5. Traditional degree distribution curve of BA scale-free networks for N = 100 (a), 300 (b), and 600 (c).
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Fig. 6. Motif-based node degree distribution curve of BA scale-free networks, for N = 100 (a), 300 (b), and 600 (c).
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Table 4. Entropy of node degree distribution based on motif and index γ .

Network parameters HM
Traditional node degree Motif-based node degree

distribution function index γ1 distribution function index γ2

N = 100, M = 3 1.7415 2.4842 1.5294
N = 100, M = 6 3.1540 2.5060 0.3358
N = 100, M = 9 3.7778 2.6881 0.3154
N = 300, M = 3 1.3542 2.3140 1.6416
N = 300, M = 6 2.8258 2.5318 0.8994
N = 300, M = 9 3.6219 2.6164 0.4122
N = 600, M = 3 1.2226 2.5431 1.7897
N = 600, M = 6 2.5155 2.5990 0.9785
N = 600, M = 9 3.4017 2.8490 0.6500

It can be found from Table 4 that for the BA scale-free
networks, when N is the same and M gradually increases, the
trend of HM , that is, the changing trend of network robustness
is the same as that of γ1, but opposite to γ2. When M is the
same and N increases gradually, the trend of HM , that is, the
changing trend of network robustness and γ2 are opposite to
each other.

4.2. Computational complexity analysis

In this subsection, we will calculate the time complex-
ity of different indicators when measuring network robustness,
and highlight the superiority of our method by comparing the
time complexity.

When calculating HM , kM , and PM (kM) will be involved,
and the calculation of kM turns the most complicated, with
the time complexity being O(N ·NM), where NM represents
the number of the 3rd-order motifs in the network. For BG,
the computational complexity mainly focuses on Be, the time
complexity is O(N2 · L), and the time complexity of EG and
DG are O

(
N2

)
and O

(
N3

)
respectively.

In the BA scale-free networks, only when M is small,
there is O(N ·NM) < O(N2), that is, the computational com-
plexity of HM is less than that of EG. However, EG considers
the robustness from a microscopic perspective by traversing
nodes, HM is based on motifs, and from a mesoscopic perspec-
tive, it also considers the coupling between the nodes them-
selves and the nodes, that is, although the time complexity
of HM is slightly higher than that of EG, it considers the in-
fluence of more local information on the network robustness.
For HM , DG, and BG, in the BA scale-free networks, there is
NM < N2 < N ·L, so O(N ·NM)< O(N3)< O(N2 ·L), namely,
the computational complexity of HM is lower than that of DG

and BG, which highlights the superiority of HM .

5. Conclusions and prospect
Motif, as a frequent interconnection pattern in the net-

work, is used to measure the robustness of the network, and
the decisive effect of the node itself and the interaction be-

tween the nodes on the robustness of the network is consid-
ered. Based on the 3rd-order motif, the entropy of node degree
distribution is used to measure the robustness of the network
under random attacks. At the same time, experiments on BA
scale-free networks verify the effectiveness and superiority of
our method, that is, the entropy of node degree distribution
based on the motif can be used as a new index to measure net-
work robustness, and the robustness of the network is directly
proportional to it. In the future work, the robustness of di-
rected networks and multilayer networks will be analyzed and
measured based on motifs.
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