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With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or
approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. Here,
we introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about
digraph states and neural network quantum states (NNQSs), we construct explicitly an NNR for any digraph state, implying
every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-
body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can
be approximated by digraph states.
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1. Introduction
In quantum physics, fully understanding and character-

izing a complex system with a large number of interacting
particles[1] is an extremely challenging problem. Solutions
within the standard framework of quantum mechanics gen-
erally require the knowledge of the full quantum many-body
wave function. Thus, the problem becomes how to solve the
many-body Schrödinger equation[2–4] of the system with a
large dimension. This is just the so-called quantum many-
body problem (QMBP)[5–7] in quantum physics, which be-
comes a hot topic in high energy physics and condensed matter
physics. When the dimension of the Hilbert space describing
the system is exponentially large, it becomes a big challenge
to solve the QMBP even with the most powerful computers.

To overcome this exponential difficulty and solve the
QMBP, many methods have been used, including tensor net-
work method (TNM)[8–10] and quantum Monte Carlo sim-
ulation (QMCS).[11] However, the TNM has difficulty to
deal with high dimensional systems[12] or systems with mas-
sive entanglement.[13] The QMCS suffers from the sign
problem.[14] Thus, some new methods are necessary for find-
ing QMBPs.

The approximation capabilities of artificial neural net-
works (ANNWs) have been investigated by many au-
thors, including Cybenko,[15] Funahashi,[16] Hornik,[17,18]

Kolmogorov,[19] Roux.[20] It is known that ANNWs can
be used in many fields, including representing complex
correlations in multiple-variable functions or probability
distributions,[20] studying artificial intelligence through the
popularity of deep learning methods,[21] developing an ar-
tificial neural network potential for Au clusters,[22] and so
on.[23–27]

Undoubtedly, the interaction between machine learning
and quantum physics will benefit both fields.[28,29] For in-
stance, in light of the idea of machine learning, Carleo and
Troyer[30] found an interesting connection between the vari-
ational approach in the QMBP and learning methods based
on neural network representations. They used a restricted
Boltzmann machine (RBM) to describe the many-body wave-
function and obtained an efficient variational representation by
optimizing those variational parameters with powerful learn-
ing methods. Chen et al.[31] discussed the general and con-
structive connection between the RBM and tensor network
states (TNS). This equivalence sets up a bridge between the
field of deep learning and quantum physics, allowing one to
use the well-established entanglement theory of TNS to quan-
tify the expressive power of RBM. Robeva et al.[32] showed
the duality between tensor networks and undirected graphical
models with discrete variables. Clark[33] used the framework
of tensor networks to unify neural-network quantum states
with the broader class of correlator product states. Huang et
al.[34] proved that any (local) tensor network state has a (local)
neural network representation. Lei et al.[35] proposed to utilize
artificial neural network to determine the PT-phase-transition
points for non-Hermitian PT-symmetric systems with short-
range potentials. Yin et al.[36] improved accuracy of estimat-
ing two-qubit states with hedged maximum likelihood. Yang
et al.[37] researched approximation of unknown ground state
of a given Hamiltonian with neural network quantum states.
Numerical evidences suggest that an RBM optimized by the
reinforcement learning method can provide a good solution
to several QMBPs.[38–46] However, the obtained solutions are
approximate, instead of exact ones. To find exact solution of
QMBP with an ANNW, the authors of Ref. [47] introduced
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neural network quantum states (NNQSs) with general input
observables from the mathematical point of view, and found
some N-qubit states that can be represented by a normalized
NNQS, such as all separable pure states, Bell states and GHZ
states.

Graph states are a special class of pure multi-party
quantum states, and they have extensive applications. One-
way quantum computation takes graph states as resources[48]

and all code words in the standard quantum error correct-
ing codes correspond to graph states.[49] Graph states have
been produced in optical lattices[50] and the basic elements
of one-way quantum computing have been demonstrated
experimentally.[51] In Ref. [47], we determined the necessary
and sufficient conditions for the representability of a general
graph state using normalized NNQS for a given number of
hidden neurons. Gao et al.[52] proved theoretically that every
graph state can be represented by an RBM with {0,1}-input
and obtained the RBMRs of every graph state.

Spectra of quantum graphs display in general universal
statistics characteristic for ensembles of random unitary ma-
trices observed by Kottos and Smilansky in Refs. [53,54]. The
quantization scheme of Kottos and Smilansky has been gen-
eralized to directed graphs (digraphs).[55–57] A digraph pro-
vide an intermediate step that gives explicit relationships be-
tween the process variables, human errors, and equipment fail-
ure events, from which the fault tree can be constructed.[58] It
has many applications, e.g., fault-tree synthesis,[58] fault prop-
agation model[59] and design of sensor network.[60]

In this paper, we aim to define digraph states (directed
graph) and construct explicitly the neural network representa-
tions (NNRs) of digraph states. In Section 2, some notations
and conclusions on NNQS with general input observables are
recalled and some related properties are proved. In Section 3,
digraph states are proposed, and some properties are explored.
In Section 4, the NNRs of digraph states are constructed.

2. Neural network quantum states
To start with, let us first briefly introduce some notations

in the neural network architecture oriented from Ref. [30] and
mathematically formulated in Ref. [47].

Let Q1,Q2, . . . ,QN be N quantum systems with state
spaces ℋ1,ℋ2, . . . ,ℋN of dimensions d1,d2, . . . ,dN , respec-
tively. We consider the composite system Q of Q1,Q2, . . . ,QN

with state spaceℋ :=ℋ1⊗ℋ2⊗·· ·⊗ℋN .
Let S1,S2, . . . ,SN be non-degenerate observables of sys-

tems Q1,Q2, . . . ,QN , respectively. Then S = S1⊗S2⊗·· ·⊗SN

is an observable of the composite system Q. Use {|ψk j⟩}
d j−1
k j=0

to denote the eigenbasis of S j corresponding to eigenvalues

{λk j}
d j−1
k j=0 . Thus,

S j|ψk j⟩= λk j |ψk j⟩(k j = 0,1, . . . ,d j−1). (1)

It is easy to check that the eigenvalues and corresponding
eigenbases of S = S1⊗S2⊗·· ·⊗SN are

λk1λk2 . . .λkN ,

|ψk1⟩⊗ |ψk2⟩⊗ · · ·⊗ |ψkN ⟩ (k j = 0,1, . . . ,d j−1), (2)

respectively. Put

V (S)=
{

Λk1k2...kN ≡
(
λk1 ,λk2 , . . . ,λkN

)T : k j = 0,1, . . . ,d j−1
}
,

called an input space. For parameters

a = (a1,a2, . . . ,aN)
T ∈ CN ,

b = (b1,b2, . . . ,bM)T ∈ CM, W = [Wi j] ∈ CM×N ,

write Ω = (a,b,W ) and put

ΨS,Ω (λk1 ,λk2 , . . . ,λkN )

= ∑
hi=±1

exp

(
N

∑
j=1

a jλk j +
M

∑
i=1

bihi +
M

∑
i=1

N

∑
j=1

Wi jhiλk j

)
. (3)

Then we obtain a complex-valued functionΨS,Ω (λk1 ,λk2 , . . . ,λkN )

of the input variable Λk1k2...kN . We call it a neural net-
work quantum wave-function (NNQWF).[47] It may be iden-
tically zero. For example, when bi =

πı
2 , Wi j = 0 for i =

1,2, . . . ,M, j = 1,2, . . . ,N, we have ΨS,Ω (λk1 ,λk2 , . . . ,λkN )≡ 0
for all λk1 ,λk2 , . . . ,λkN . In what follows, we assume that this
is not the case, i.e., assume that ΨS,Ω (λk1 ,λk2 , . . . ,λkN ) ̸= 0 for
some input variable Λk1k2...kN . Then we define

|ΨS,Ω ⟩ = ∑
Λk1k2 ...kN∈V (S)

ΨS,Ω (λk1 ,λk2 , . . . ,λkN )|ψk1⟩

⊗|ψk2⟩⊗ · · ·⊗ |ψkN ⟩, (4)

which is a nonzero vector (not necessarily normalized) of the
Hilbert space ℋ. We call it a neural network quantum state
(NNQS) induced by the parameter Ω = (a,b,W ) and the input
observable S = S1⊗S2⊗·· ·⊗SN (Fig. 1).[47]

WMNWi

Wi
Wi

W
WiN

h1 h2 h3 hi hM
… …

S S S Sj SN
… …

Wij

Visible layer 

Hidden layer 

Fig. 1. Artificial neural network encoding an NNQS. It is a restricted
Boltzmann machine architecture that features a set of N visible artifi-
cial neurons (blue disks) and a set of M hidden neurons (yellow disks).
For each value Λk1k2...kN of the input observable S, the neural network
computes the value of the ΨS,Ω (λk1 ,λk2 , . . . ,λkN ).

The NNQWF can be reduced to

ΨS,Ω (λk1 ,λk2 , . . . ,λkN )

=
N

∏
j=1

ea jλk j ·
M

∏
i=1

2cosh

(
bi +

N

∑
j=1

Wi jλk j

)
. (5)

There is a special class of NNQSs:
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When S = σ
z
1⊗σ

z
2⊗·· ·⊗σ

z
N , we have

λk j =

{
1, k j = 0,
−1, k j = 1,

|ψk j⟩=
{
|0⟩, k j = 0,
|1⟩, k j = 1, (1≤ j ≤ N) (6)

and V (S) = {1,−1}N .
In this case, the NNQS (4) becomes

|ΨS,Ω ⟩ = ∑
Λk1k2 ...kN∈{1,−1}N

ΨS,Ω (λk1 ,λk2 , . . . ,λkN )|ψk1⟩

⊗|ψk2⟩⊗ · · ·⊗ |ψkN ⟩. (7)

This leads to the NNQS induced in Ref. [30] and discussed in
Refs. [47,61]. We call such an NNQS a spin-z NNQS.[47]

From the definition of NNQWF, we can easily obtain the
following results.

Proposition 1 If a hidden layer neuron hM+1 is added
into an RBM with NNQWF ΨS,Ω (λk1 , λk2 , . . . ,λkN ), then the
NNQWF ΨS,Ω ′(λk1 ,λk2 , . . . ,λkN ) of the resulted network reads

ΨS,Ω ′(λk1 ,λk2 , . . . ,λkN )

= ΨS,Ω (λk1 ,λk2 , . . . ,λkN ) ·ΨS,Ω̃ (λk1 ,λk2 , . . . ,λkN ),

where

ΨS,Ω̃ (λk1 ,λk2 , . . . ,λkN )

= ∑
hM+1=±1

exp

(
N

∑
j=1

ã jλk j+b̃hM+1 +
N

∑
j=1

hM+1W(M+1) jλk j

)
,

Ω = (a,b,W ), Ω
′ = (a′,b′,W ′), Ω̃ = (ã, b̃,W̃ ),

a′ = a+ ã, b̃ = bM+1,

W̃ = (W(M+1)1,W(M+1)2, . . . ,W(M+1)N),

b′ =
(

b
b̃

)
∈ CM+1, W ′ =

(
W
W̃

)
∈ C(M+1)×N .

This result can be illustrated by Fig. 2.

h1 h2 h3 ...       Hidden layer

...         Visible layerS S S SN

hM hM⇁

Fig. 2. The resulted network by adding a hidden layer neuron hM+1
into an network with visible layer S1,S2, . . . ,SN and hidden layer
h1,h2, . . . ,hM .

Proposition 2 Suppose that ΨS,Ω ′(λk1 ,λk2 , . . . ,λkN ) and
ΨS,Ω ′′(λk1 ,λk2 , . . . ,λkN ) are two spin-z NNQWFs with the
same input observable S = σ

z
1⊗σ

z
2⊗·· ·⊗σ

z
N , and individual

parameters Ω ′ = (a′,b′,W ′), Ω ′′ = (a′′,b′′,W ′′), respectively.
Then

ΨS,Ω ′(λk1 ,λk2 , . . . ,λkN ) ·ΨS,Ω ′′(λk1 ,λk2 , . . . ,λkN )

= ΨS,Ω (λk1 ,λk2 , . . . ,λkN ),

where

Ω = (a,b,W ), a = a′+a′′,

b =

(
b′

b′′

)
∈ CM′+M′′ ,

W =

(
W ′

W ′′

)
∈ C(M′+M′′)×N .

3. Digraph states
In this section, we aim to introduce digraph states. To do

this, let us start by introducing the definition of digraph. A
digraph (or a directed graph)[57,62] is a pair

−→
G = (V,

−→
E ) con-

sisting of a set V = {1,2, . . . ,N} and a nonempty subset
−→
E of

V ×V . The elements of V and
−→
E are called vertices and edges

of
−→
G , respectively. When e = (i1, i2) ∈

−→
E , we say that e is an

edge of
−→
G from the vertex i1 to the vertex i2.

Given a digraph
−→
G = (V,

−→
E ), we call

←−
G = (V,

←−
E ) the

inverse graph of
−→
G = (V,

−→
E ), where

←−
E = {( j, i)|(i, j) ∈ −→E }.

For example, when
−→
E = {(1,2),(2,1),(1,3),(4,3),(3,5),(5,3),(4,5)},

we have
←−
E = {(2,1),(1,2),(3,1),(3,4),(5,3),(3,5),(5,4)},

see Figs. 3 and 4.

1 2

3

4 5

Fig. 3. A digraph
−→
G .

1 2

3

4 5

Fig. 4. The inverse graph of a digraph
−→
G .

Given a digraph
−→
G = (V,

−→
E ), for each edge (i, j) ∈ −→E

define an operator on the N-qubit system (C2)⊗N :

U (i, j) =

{
P(i)

Z,++P(i)
Z,−Z( j), i≤ j,

P(i)
Z,−+P(i)

Z,+Z( j), i > j,

where

P(i)
Z,± =

I±Z(i)

2
, |+⟩= 1√

2
(|0⟩+ |1⟩),

060303-3
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I is the 2N × 2N unit matrix, and Z(i) denotes the Pauli σz

gate acting on the i-subsystem, that is, Z(i) =
⊗N

k=1 Tk with
Ti = Z = σz and Tk = I2(k ̸= i) in which I2 is the 2× 2 unit
matrix.

It is easy to check that U (i, j) is a Hermitian operator for
every (i, j) ∈ −→E and has the following properties.

(1) When i = j, it holds that

U (i,i) = P(i)
Z,++P(i)

Z,−Z(i) = Z(i),

thus

U (i,i)|k1k2 . . .kN⟩= (−1)ki |k1k2 . . .kN⟩, (8)

for all k1,k2, . . . ,kN = 0,1.
(2) When i < j, it holds that

U (i, j)|k1k2 . . .kN⟩=
{
−|k1k2 . . .kN⟩, ki = k j = 1,
|k1k2 . . .kN⟩, otherwise,

for all k1,k2, . . . ,kN = 0,1. Thus,

U (i, j)|k1k2 . . .kN⟩= (−1)kik j |k1k2 . . .kN⟩, (9)

for all k1,k2, . . . ,kN = 0,1.
(3) When i > j, it holds that

U (i, j)|k1k2 . . .kN⟩=
{
−|k1k2 . . .kN⟩, k j = 1,ki = 0;
|k1k2 . . .kN⟩, otherwise,

for all k1,k2, . . . ,kN = 0,1. Thus,

U (i, j)|k1k2 . . .kN⟩= (−1)(ki+1)k j |k1k2 . . .kN⟩, (10)

for all k1,k2, . . . ,kN = 0,1.
With these properties, we have the following proposition.
Proposition 3 If i ̸= j, then

U ( j,i) = Z(min{i, j})U (i, j) =U (i, j)Z(min{i, j}), (11)

U (i, j)U (i, j) =U ( j,i)U ( j,i) = I, (12)

U ( j,i)U (i, j) =U (i, j)U ( j,i) = Z(min{i, j}). (13)

Proof When i ̸= j, without loss of generality, we assume
i < j. From Eqs. (9)–(10) we obtain

U (i, j)|k1k2 . . .kN⟩ = (−1)kik j |k1k2 . . .kN⟩,

U ( j,i)|k1k2 . . .kN⟩ = (−1)(k j+1)ki |k1k2 . . .kN⟩

for all k1,k2, . . . ,kN = 0,1. Hence,

U ( j,i)|k1k2 . . .kN⟩ = (−1)kiU (i, j)|k1k2 . . .kN⟩
= Z(i)U (i, j)|k1k2 . . .kN⟩

or

U ( j,i)|k1k2 . . .kN⟩ = (−1)kiU (i, j)|k1k2 . . .kN⟩
= U (i, j)Z(i)|k1k2 . . .kN⟩

for all k1,k2, . . . ,kN = 0,1. Therefore,

U ( j,i) = Z(i)U (i, j) =U (i, j)Z(i).

Thus, when i ̸= j, we have

U ( j,i) = Z(min{i, j})U (i, j) =U (i, j)Z(min{i, j}).

Equations (9)–(10) easily yield

U (i, j)U (i, j) = U ( j,i)U ( j,i) = I.

Multiplying by U (i, j) on both sides of Eq. (11), we obtain

U ( j,i)U (i, j) = U (i, j)U ( j,i) = Z(min{i, j}).

We can see from Eq. (12) that U (i, j) is a unitary operator
for every (i, j) ∈−→E . This enables us to define an N-qubit pure
state

|−→G ⟩=

 ∏
(i, j)∈−→E

U (i, j)

 |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

, (14)

called the digraph state corresponding to the digraph
−→
G =

(V,
−→
E ).
Proposition 4 The relationship between |←−G ⟩ and |−→G ⟩ is

written as

|←−G ⟩=

 ∏
( j,i)∈−→E ,i ̸= j

Z(min{i, j})

 |−→G ⟩.
Proof Using Eqs. (11) and (14), we have

|←−G ⟩ = ∏
(i, j)∈←−E

U (i, j) |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

=

 ∏
(i,i)∈←−E

U (i,i)

 ∏
(i, j)∈←−E ,i ̸= j

U (i, j)

 |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

=

 ∏
(i,i)∈−→E

U (i,i)

 ∏
( j,i)∈−→E ,i̸= j

U ( j,i)Z(min{i, j})

 |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

=

 ∏
( j,i)∈−→E ,i̸= j

Z(min{i, j})

 ∏
(i,i)∈−→E

U (i,i)

 ∏
( j,i)∈−→E ,i̸= j

U ( j,i)

 |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

060303-4
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=

 ∏
( j,i)∈−→E ,i̸= j

Z(min{i, j})

 ∏
(i, j)∈−→E

U (i, j)

 |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

=

 ∏
( j,i)∈−→E ,i ̸= j

Z(min{i, j})

 |−→G ⟩.

Next, we reduce the expression (14) of digraph state by
the next procedure.

Let

E0 = {(i, j)|(i, j) ∈ −→E , i = j},
E1 = {(i, j)|(i, j) ∈ −→E , i < j},
E2 = {(i, j)|(i, j) ∈ −→E , i > j},
E3 = {(i, j)|(i, j) ∈ −→E ,( j, i) ∈ −→E , i ̸= j}.

Since

|+⟩⊗N = |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

=
1

(
√

2)N ∑
k1,k2,...,kN=0,1

|k1k2 . . .kN⟩,

from Eqs. (8)–(10) and Eq. (13) we can see

|−→G ⟩ = ∏
(i, j)∈−→E

U (i, j) |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸
N

= ∑
k1,...,kN=0,1

1
(
√

2)N ∏
(i, j)∈−→E

U (i, j)|k1k2 . . .kN⟩

= ∑
k1,...,kN=0,1

1
(
√

2)N

(
∏

(i, j)∈E2

U (i, j)

)(
∏

(i, j)∈E1

U (i, j)

)(
∏

(i, j)∈E0

U (i, j)

)
|k1k2 . . .kN⟩

= ∑
k1,...,kN=0,1

1
(
√

2)N

(
∏

(i, j)∈E2∖E3

U (i, j)

)(
∏

(i, j)∈E2∩E3

U (i, j)

)(
∏

(i, j)∈E1∖E3

U (i, j)

)

×

(
∏

(i, j)∈E1∩E3

U (i, j)

)(
∏

(i,i)∈E0

U (i,i)

)
|k1k2 . . .kN⟩

= ∑
k1,...,kN=0,1

1
(
√

2)N

(
∏

(i, j)∈E2∖E3

U (i, j)

)(
∏

(i, j)∈E1∖E3

U (i, j)

)(
∏

(i,i)∈E0

U (i,i)

)(
∏

(i, j)∈E2∩E3

Z( j)

)
|k1k2 . . .kN⟩

= ∑
k1,...,kN=0,1

1
(
√

2)N

(
∏

(i, j)∈E2∖E3

(−1)(ki+1)k j

)(
∏

(i, j)∈E1∖E3

(−1)kik j

)(
∏

(i,i)∈E0

(−1)ki

)(
∏

(i, j)∈E2∩E3

(−1)k j

)
|k1k2 . . .kN⟩

= ∑
k1,...,kN=0,1

1
(
√

2)N

(
∏

(i, j)∈E2∖E3

(−1)kik j

)(
∏

(i, j)∈E1∖E3

(−1)kik j

)(
∏

(i,i)∈E0

(−1)ki

)(
∏

(i, j)∈E2

(−1)k j

)
|k1k2 . . .kN⟩.

Note that

(−1)kik j = (−1)
(1−λki)

(
1−λk j

)
4 ,

∀(i, j) ∈ (E2 ∖E3)∪ (E1 ∖E3);

(−1)ki = (−1)
(1−λki)

2 , ∀(i, i) ∈ E0;

(−1)k j = (−1)

(
1−λk j

)
2 , ∀(i, j) ∈ E2,

we obtain

|−→G ⟩ = ∑
Λk1k2 ...kN∈{1,−1}N

Ψ−→G (λk1 ,λk2 , . . . ,λkN )

·|ψk1⟩⊗ |ψk2⟩⊗ · · ·⊗ |ψkN ⟩, (15)

where

Ψ−→G (λk1 , . . . ,λkN )

=
1

(
√

2)N

 ∏
(i, j)∈E2∖E3

(−1)
(1−λki)

(
1−λk j

)
4


×

 ∏
(i, j)∈E1∖E3

(−1)
(1−λki)

(
1−λk j

)
4


×

(
∏

(i,i)∈E0

(−1)
1−λki

2

)(
∏

(i, j)∈E2

(−1)
1−λk j

2

)
, (16)

and λk1 , . . . ,λkN , |ψk1⟩, . . . , |ψkN ⟩ are shown in Eq. (6). We see

that the simplified expression (15) is simpler and easier to use.

Given a digraph, we can use this expression to obtain a digraph

state associated to it very quickly.

For example, the digraph state |−→C 3⟩ given by the digraph
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−→
C 3 (Fig. 5) is

|−→C 3⟩ =
1

(
√

2)3 ∑
Λk1k2k3∈{1,−1}3

× ∏
(i, j)∈E1

(−1)
(1−λki)

(
1−λk j

)
4 · |ψk1ψk2ψk3⟩

=
1

2
√

2
(|000⟩+ |001⟩+ |010⟩− |011⟩

+ |100⟩+ |101⟩− |110⟩+ |111⟩),

and |←−C 3⟩ corresponding to Fig. 6 is

|←−C 3⟩ =
1

(
√

2)3 ∑
Λk1k2k3∈{1,−1}3

∏
(i, j)∈E2

(−1)
(1−λki)

(
1−λk j

)
4

·

(
∏

(i, j)∈E2

(−1)
1−λk j

2

)
· |ψk1ψk2ψk3⟩

=
1

2
√

2
(|000⟩+ |001⟩− |010⟩+ |011⟩

−|100⟩− |101⟩− |110⟩+ |111⟩).

1 2 3

Fig. 5. Digraph
−→
C 3 with E0 = E2 = E3 = /0, E1 = {(1,2),(2,3)}.

1 2 3

Fig. 6. Inverse graph of digraph
−→
C 3 with E0 = E1 = E3 = /0, E2 =

{(3,2),(2,1)}.

Generally, digraph state can be implemented by quantum
circuit. Specifically, given a digraph

−→
G = (V,

−→
E ), one can

implement the corresponding digraph state |−→G ⟩ for Eq. (14)
using quantum circuit, the procedures are as follows: First, as-
sign to each vertex a qubit initialized as the state |+⟩ so that the
total initial state is an N-qubit |0⟩⊗N = |+⟩|+⟩ · · · |+⟩︸ ︷︷ ︸

N

. Then,

for every (i, j) ∈ −→E , make the following operations:
(a) When i = j, perform Z operation on the qubit i.
(b) When i < j, perform controlled-Z operation on j con-

trolled by qubit i (see Fig. 7).
(c) When i > j, we first perform controlled-Z operation

on qubit i controlled by qubit j following a Z operation on
qubit j (see Fig. 8).

This procedure are demonstrated by the following two ex-
amples in Figs. 7 and 8, where

|←−C 3⟩ =
1

2
√

2
(|000⟩+ |001⟩− |010⟩+ |011⟩

−|100⟩− |101⟩− |110⟩+ |111⟩),

|−→C 3⟩ =
1

2
√

2
(|000⟩+ |001⟩+ |010⟩− |011⟩

+ |100⟩+ |101⟩− |110⟩+ |111⟩).

These figures also show the correspondence between a digraph
and the circuit implementation of the corresponding digraph
state.

Z

Z
  

⇁> 

⇁> 

⇁> 

C>
→

C

→

Fig. 7. The digraph
−→
C 3 = ({1,2,3},{(1,2),(2,3)}) and the corre-

sponding quantum circuit.

  

⇁> 

⇁> 

⇁> 

C>
←

C

←

Z

ZZ

Z

Fig. 8. The digraph
←−
C 3 = ({1,2,3},{(2,1),(3,2)}) and the corre-

sponding quantum circuit.

The above procedure implies that it is physically easy to
prepare a digraph state. In addition, if there exists an edge
(i, j) ∈−→E with i ̸= j in a digraph G, i.e., there exist two differ-
ent vertices that are connected by edge, then the correspond-
ing digraph state must be entangled and then becomes a new
kind of multipartite entangled states. Thus, digraph states form
a valuable resource for various tasks, including quantum key
distribution, randomness extraction, and quantum communi-
cation, and so on.

Moreover, we can clearly see |−→C 3⟩ ̸= |
←−
C 3⟩ since

|−→C 3⟩− |
←−
C 3⟩=

1√
2
(|010⟩− |011⟩+ |100⟩+ |101⟩) .

The undirected graph C3 obtained by deleting arrows in Fig. 5
is given by Fig. 9 and the corresponding graph state |C3⟩ reads

|C3⟩ =
1

2
√

2
|000⟩+ |001⟩+ |010⟩− |011⟩

+ |100⟩+ |101⟩− |110⟩+ |111⟩),

which is equal to the digraph state |−→C 3⟩, but not equal to the
digraph state |←−C 3⟩.

  

⇁> 

⇁> 

⇁> 

C>

C

Z

Z

Fig. 9. Undirected graph C3 and the corresponding quantum circuit.

Indeed, the digraph state |←−C 3⟩ is not any graph state, re-
ferring to Fig. 10 in which all of the 8 graph states of three
qubits are list, including |C3⟩= |G5⟩.

Generally, every undirected graph G = (V,E) can be re-
garded as a digraph

−→
G = (V,

−→
E ), where

−→
E = {(i, j) : (i, j) ∈

E(i < j)}. It easy to see that the digraph state |−→G ⟩ is exactly
equal to graph state |G⟩. Thus, digraph states can be regarded
as a type of generalizations of graph states. However, they
are not the same, e.g., |←−C 3⟩ ̸= |Gk⟩ referring to Fig. 10 for all
k = 0,1, . . . ,7.
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1 2

3

G0

1 2

3

G1

1 2

3

G2

1 2

3

G3

1 2

3

G4

1 2

3

G5

1 2

3

G6

1 2

3

G7

G0>/      ↼>⇁>⇁>⇁>
1

2√2

+|100>+|101>+|110>+|111>)

G1>/      ↼>⇁>⇁>⇁>
1

2√2

+|100>+|101>-|110>-|111>)

G2>/      ↼>⇁>⇁>⇁>
1

2√2

+|100>-|101>+|110>-|111>)

G3>/      ↼>⇁>⇁>↩>
1

2√2

+|100>+|101>+|110>-|111>)

G4>/      ↼>⇁>⇁>⇁>
1

2√2

+|100>-|101>-|110>+|111>)

G5>/      ↼>⇁>⇁>↩>
1

2√2

+|100>+|101>-|110>+|111>)

G6>/      ↼>⇁>⇁>↩>
1

2√2

+|100>-|101>+|110>+|111>)

G7>/      ↼>⇁>⇁>↩>
1

2√2

+|100>-|101>-|110>-|111>)

Fig. 10. All possible graph states of three qubits.

4. Representing a digraph state as an NNQS

In this section, we construct a neural network representa-
tion of a digraph state |−→G ⟩ using {1,−1}-input NNQS, that is,
to find an NNQS |ΨS,Ω ⟩ such that |−→G ⟩= z|ΨS,Ω ⟩, i.e.,

Ψ−→G (λk1 ,λk2 , . . . ,λkN ) = zΨS,Ω (λk1 ,λk2 , . . . ,λkN ),

∀(λk1 ,λk2 , . . . ,λkN ) ∈ {−1,1}N (17)

for some normalized constant z. It is enough to represent the
four factors in Eq. (16) as NNQWFs.

For each (i, j) ∈ E2 ∖E3 or (i, j) ∈ E1 ∖E3, put

Ω(i, j) = (a(i, j),b(i, j),W(i, j)),

a(i, j) = 0 ∈ CN , b(i, j) =
πı
4
,

W(i, j) = [W(i, j)s] ∈ C1×N ,

W(i, j)s =

{
−πı

4 , s = i or s = j;
0, otherwise,

then NNQWF ΨS,Ω(i, j)
(λk1 , . . . ,λkN ) generated by these param-

eters is

ΨS,Ω(i, j)
(λk1 , . . . ,λkN )

= ∑
h(i, j)=±1

exp
(

πı
4

h(i, j)−
πı
4

h(i, j)λki −
πı
4

h(i, j)λk j

)
=
√

2 · (−1)
(1−λki

)(1−λk j
)

4 .

This implies that the function
√

2 ·(−1)
(1−λki

)(1−λk j
)

4 can be im-
plemented by NNQWF ΨS,Ω(i, j)

(λk1 , . . . ,λkN ), which is gener-
ated by the neural network with one hidden neuron h(i, j). This
process can be illustrated in Fig. 11.

W↼i↪j↽i/↩πi/ W↼i↪j↽j/↩πi/i j

i j

h↼i↪j↽

S1 Si Sj SN

W↼j↪i↽i/↩πi/ W↼j↪i↽j/↩πi/

h↼j↪i↽

S1 Si Sj SN

... ... ...

... ... ...

Fig. 11. Neural networks representing the functions
√

2 ·(−1)
(1−λki

)(1−λk j
)

4 for
(i, j) ∈ E1 ∖E3 and ( j, i) ∈ E2 ∖E3, respectively.

For each (i, i) ∈ E0, put

Ω(i,i) = (a(i,i),b(i,i),W(i,i)), a(i,i) = 0 ∈ CN , b(i,i) =
πı
2
,

W(i,i) = [W(i,i)s] ∈ C1×N , W(i,i)s =

{
−πı

4 , s = i;
0, s ̸= i,

then the resulted NNQWF ΨS,Ω(i,i)
(λk1 , . . . ,λkN ) is

ΨS,Ω(i,i)
(λk1 , . . . ,λkN )

= ∑
h(i,i)=±1

exp
(

πı
2

h(i,i)−
πı
4

h(i,i)λki

)
=
√

2 · (−1)
1−λki

2 .

This implies that the function
√

2 · (−1)
1−λki

2 can be imple-
mented by NNQWF ΨS,Ω(i,i)

(λk1 , . . . ,λkN ) for any (i, i) ∈ E0

given by the neural network with one hidden neuron h(i,i), see
Fig. 12.

W↼i↪i↽i/↩πi/

S1 Si Sj SN... ... ...

h↼i↪i↽

Fig. 12. Neural network generating the function
√

2 · (−1)
1−λki

2 for any
(i, i) ∈ E0.

For each (i, j) ∈ E2, put

Ω(i, j) = (a(i, j),b(i, j),W(i, j)), a(i, j) = 0 ∈ CN , b(i, j) =
πı
2
,

W(i, j) = [W(i, j)s] ∈ C1×N , W(i, j)s =

{
−πı

4 , s = j;
0, s ̸= j,

then NNQWF ΨS,Ω(i, j)
(λk1 , . . . ,λkN ) generated by these param-

eters is

ΨS,Ω(i, j)
(λk1 , . . . ,λkN )
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= ∑
h(i, j)=±1

exp
(

πı
2

h(i, j)−
πı
4

h(i, j)λk j

)
=
√

2 · (−1)
1−λk j

2 .

This implies that the function
√

2 · (−1)
1−λk j

2 can be imple-
mented by NNQWF ΨS,Ω(i, j)

(λk1 , . . . ,λkN ) generated by the
neural network with one hidden neuron h(i, j), see Fig. 13.

W↼i↪j↽i/↩πi/

S1 Sj Si SN... ... ...

h↼i↪j↽

Fig. 13. Neural network representing the function
√

2 · (−1)
1−λk j

2 for
each (i, j) ∈ E2.

It follows from Eq. (16) and proposition 2 that

Ψ−→G (λk1 ,λk2 , . . . ,λkN )

=
1

(
√

2)N+|E|

(
∏

(i, j)∈E2∖E3

ΨS,Ω(i, j)
(λk1 , . . . ,λkN )

)

×

(
∏

(i, j)∈E1∖E3

ΨS,Ω(i, j)
(λk1 , . . . ,λkN )

)

×

(
∏

(i,i)∈E0

ΨS,Ω(i,i)
(λk1 , . . . ,λkN )

)

×

(
∏

(i, j)∈E2

ΨS,Ω(i, j)
(λk1 , . . . ,λkN )

)

=
1

(
√

2)N+|E|
ΨS,Ω (λk1 ,λk2 , . . . ,λkN ),

for all (λk1 ,λk2 , . . . ,λkN ) ∈ {−1,1}N .
Now, we have constructed an NNQWFΨS,Ω (λk1 ,λk2 , . . . ,λkN )

satisfying Eq. (17). This leads to the following conclusion.
Theorem 1 Any digraph state |−→G ⟩ can be represented

as a spin-z NNQS (7) generated by a neuron network with
|E|+ |E2 ∖E3| hidden neurons.

If we identity an undigraph G = (V,E) with the digraph
−→
G = (V,

−→
E ) in such a way that

−→
E = {(i, j) : (i, j) ∈ E}, then

the states |G⟩ and |−→G ⟩ are equal and |E2 ∖E3| = 0. With this
observation, we have the following corollary.

Corollary 1 Any (undirected) graph state |G⟩ can be rep-
resented as a spin-z NNQS (7) generated by a neuron network
with |E| hidden neurons.

Example 1 Consider a digraph
−→
G = (V,

−→
E ) with

V = {1,2, . . . ,8} and
−→
E = {(1,2),(1,3),(3,1),(3,4),

(4,6),(7,4),(7,5),(6,8),(8,6)}, which is represented on the
left side of Fig. 14. In this case, the wave function of the
digraph state |−→G ⟩ reads

Ψ−→G (λk1 , . . . ,λk8)

=
1

(
√

2)8

 ∏
(i, j)∈E2∖E3

(−1)
(1−λki)

(
1−λk j

)
4


×

 ∏
(i, j)∈E1∖E3

(−1)
(1−λki)

(
1−λk j

)
4


×

(
∏

(i, j)∈E2

(−1)
1−λk j

2

)
,

where

E1 = {(1,2),(1,3),(3,4),(4,6),(6,8)},

E2 = {(3,1),(7,4),(7,5),(8,6)},

E3 = {((1,3),(3,1),(6,8),(8,6)},

E1 ∖E3 = {(1,2),(3,4),(4,6)},

E2 ∖E3 = {(7,4),(7,5)}.

In the middle of Fig. 14, we demonstrate the idea of construct-
ing a neural network representation of digraph state |G⟩. The
neural network that generates ΨG(λk1 , . . . ,λk8) is given on the
right side of Fig. 14.



 



   

  ω ω ω ω ω ω


 

 



h1

S1 S2 S3 S4 S5 S6 S7 S8

h2 h3 h4 h5 h6 h7 h8 h9

Fig. 14. Neural network representation of digraph states. The first figure is graph representation of a digraph state. The second one is an idea
of the process. The third one is neural network representation of the digraph state, where ω =−π i/4, Si = σ

z
i , i = 1, . . . ,8.

In this case, the parameters are

a = 0 ∈ C8, b =
(

πı
4
,

πı
4
,

πı
4
,

πı
4
,

πı
4
,

πı
2
,

πı
2
,

πı
2
,

πı
2

)T
∈ C9,
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W =



−πı/4 −πı/4 0 0 0 0 0 0
0 0 −πı/4 −πı/4 0 0 0 0
0 0 0 −πı/4 0 −πı/4 0 0
0 0 0 −πı/4 0 0 −πı/4 0
0 0 0 0 −πı/4 0 −πı/4 0

−πı/4 0 0 0 0 0 0 0
0 0 0 −πı/4 0 0 0 0
0 0 0 0 −πı/4 0 0 0
0 0 0 0 0 −πı/4 0 0


.

5. Conclusion
In summary, we have introduced digraph states and con-

structed explicitly neural network representations for any di-
graph state. This means that we have found a new class of
entangled multipartite quantum states that can be learned with
neural network. Our method shows constructively that all di-
graph states can be represented precisely by proper neural net-
works proposed in Ref. [30] and mathematically formulated in
Ref. [47]. The obtained results will provide a theoretical foun-
dation for solving the quantum many-body problem with ma-
chine learning method whenever the wave-function is known
as an unknown digraph state or it can be approximated by di-
graph states.
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