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Cs2TiBr6 nanocrystals (NCs) are a type of promising optoelectronic materials, owing to their high photoelectric prop-
erties and non-toxicity. Here, we synthesize the colloidal Cs2TiBr6 NCs using a hot-injection approach. The temperature-
dependent absorption data shows that its energy band changes about 30 meV with temperature, reflecting that its energy
band structure is much stable. The excitation intensity-dependent transient absorption data confirms its linear absorption
cross-sections and carrier recombination rate constants, involving monomolecular and bimolecular recombination, which
are all superior to those of conventional perovskite bromide counterparts. In addition, its nonlinear absorption cross-sections
are also measured based on femtosecond Z-scan. Our results suggest that Cs2TiBr6 NCs can be extensively applied in the
field of optoelectronics, owing to its excellent carrier dynamics and nonlinear optical properties.

Keywords: Cs2TiBr6, nonlinear optics, ultrafast spectroscopy, absorption spectra

PACS: 42.65.−k, 78.47.J−, 78.40.Fy DOI: 10.1088/1674-1056/ac5984

1. Introduction
Functional nanomaterials are of great importance for

many applications.[1,2] Recently, perovskite lead halides, a
new type of semiconducting nanomaterials have exhibited
a very fast development in photovoltaics,[3] light-emitting
diodes (LEDs),[4] photocatalysis,[5] lasers,[6] photodetec-
tors, et al.,[7] due to their tuneable spectrum,[8] strong
photoluminescence,[6] reasonable defect tolerance,[9] high dif-
fusion coefficient,[10] high carrier mobility,[11] and long car-
rier lifetime.[12] However, the stability of perovskites and the
toxicity of Pb currently are two major obstacles for the prac-
tical application of perovskites, which the community is try-
ing to overcome.[13–17] Currently, two main forms are be-
ing proposed to address the toxicity of Pb, one is to use a
monovalent cation and a trivalent cation to replace two diva-
lent lead ions (B++B3+→2Pb2+) to form double perovskite
formular A2B+B3+X6 (e.g., Cs2AgInCl6 [18–20]), the other is
to use a tetravalent cation and a vacancy to replace two di-
valent lead ions (B4++vacancy→2Pb2+) to form vacancy-
ordered perovskite derivative formula A2BX6 (e.g., Cs2TiBr6).
Cs2TiBrxI6−x, a perovskite derivative structure material, was
firstly synthesized as powders in 2017,[21] showing benign de-
fect properties and tuneable bandgap from 1.02 eV to 1.78 eV.
Later, Cs2TiBr6 was prepared as films for photovoltaic appli-
cation, yet the efficiency obtained was only 3.3%.[22] So the
application of the related devices is still a major challenge.
Therefore, the in-depth study of relevant characteristics is of
much importance for further application. Till now, most re-
searches of Cs2TiBr6 materials are focusing on the basic opti-

cal and structural properties, and mainly via Cs2TiBr6 powders
and polycrystalline films.[23,24] However, more profound in-
vestigation of photo-physical properties is also very important,
for example, its nonlinear optical properties, carrier dynamics,
and temperature-dependent energy state evolution, which will
influence further application of Cs2TiBr6 materials in the field
of optoelectronics.

In this work, we demonstrate the photo-physical prop-
erties based on multi-spectroscopy for lead-free double per-
ovskite Cs2TiBr6 nanocrystals (NCs). The energy band struc-
ture of Cs2TiBr6 NCs changes a little with temperature de-
creasing. Furthermore, the carrier recombination in the
Cs2TiBr6·NC films, involving monomolecular and bimolec-
ular, has been further studied by TA technique. And the
nonlinear optical properties of Cs2TiBr6·NCs are investigated
and the TPA section is confirmed according to the excitation
intensity-dependent Z-scan technique, which excludes the in-
terference of the excitation intensity.

2. Results and discussion
In this work, Cs2TiBr6 NCs were synthesized via a hot-

injection method. First, we investigated the morphology of
NCs by transmission electron microscopy (TEM), exhibiting
uniform, hexagonal shaped NCs with an average diameter of
13.5± 1.9 nm, as shown in Figs. 1(a) and 1(b). The uni-
form morphology of our Cs2TiBr6 NCs benefits from the pre-
cise control of the reacting temperature and modified synthesis
route, compared with previous reports.[25,26] The correspond-
ing x-ray diffraction (XRD) patterns are given in Fig. 1(c),
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showing (111), (220), (222), (400), (440), and (622) planes
at 14.3◦, 23.56◦, 28.78◦, 33.42◦, 47.84◦, and 56.84◦, respec-
tively, which is consistent with the previous report.[23] In ad-
dition, the elemental distribution was investigated by energy
dispersive x-ray (EDX) analysis, presenting that the atomic
ratio of Cs:Ti:Br is 20.08:9.97:69.95, as shown in support-
ing information (SI) Table S1, which is approximate to the
ideal proportion of 2:1:6. The chemical properties were fur-
ther studied by the x-ray photoelectron spectroscopy (XPS).
Titanium presents as +4 valence state (Fig. 1(e)), confirm-

ing by the Ti 2p1/2 and 2p3/2 peaks at 459 eV and 465 eV,
respectively.[27] The aforementioned results combine to reveal
that the as-prepared NCs are Cs2TiBr6. The schematic crystal
structure of Cs2TiBr6 is shown in Fig. 1(f), in which the Ti4+

sites and vacancies are alternatively occupied showing ordered
vacancies. And the [TiBr6]2− octahedra was isolated thus the
structure can also be considered as Ti-deficient 0D perovskite.

To study the evolution of the energy band structure of
Cs2TiBr6 NCs with temperature, the temperature-dependent
absorption spectra of Cs2TiBr6 NCs are given in Fig. 2(a).
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Fig. 1. (a) TEM image of Cs2TiBr6 NCs. (b) Size distribution histogram of Cs2TiBr6 NCs. (c) XRD patterns of Cs2TiBr6 NCs.[23] (d) Digital
photograph of Cs2TiBr6 NCs film and EDX elemental mapping of Cs2TiBr6 NCs. (e) XPS spectrum of Ti in Cs2TiBr6 NCs. (f) Schematic crystal
structure of Cs2TiBr6.
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Fig. 2. (a) The temperature-dependent absorption spectra of Cs2TiBr6 NCs. (b) Tauc plot of Cs2TiBr6 NCs. (c) The changing of band edges of
Cs2TiBr6 NCs with temperature increasing from 77 K to 295 K.
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The shape of absorption spectra is almost invariable with the
temperature decreasing, but the band edge shifts a little to
the low-energy region simultaneously. As seen in Fig. 2(b),
the bandgap of Cs2TiBr6 NCs can be estimated based on
Tauc plots with indirect bandgap type. The Eg value is
about 1.85 eV at 77 K and about 1.82 eV at 295 K. Com-
pared to the previous reports about Cs2TiBr6 bulk powers
and polycrystalline films, our NCs have similar bandgap at
room temperature.[21,28] Thus our Cs2TiBr6 NCs with a size
of 13 nm are considered to have a negligible quantum effect.
The band edges of Cs2TiBr6 NCs as a function of temperature
are summarized in Fig. 2(c), showing that all of them almost
linearly shift to the low energy region as the temperature low-
ers from 295 K to 77 K. As the temperature was varied about
220 K, the bandgap changes about 30 meV, implying that the
energy band structure is almost invariable.

Actually, the intrinsic absorption properties of Cs2TiBr6

NCs can also be investigated by femtosecond transient absorp-
tion (fs-TA) spectroscopy techniques.[29,30] Herein, figure 3(a)
shows the time-dependent TA spectrum of Cs2TiBr6 NCs at
room temperature, in which a strong ground state bleaching
(GSB) signal is located at ∼ 481 nm, meanwhile two photo-
induced absorption (PIA) bands are located at 575 nm and
448 nm, respectively. The PIA signal at 575 nm narrows no-
ticeably with time prolonging in the low energy region, com-
pared to the GSB signal, where the change is less obvious.
Figure 3(b) shows the TA spectrum of Cs2TiBr6 NCs at 77 K,
which is also composed of a small PIA at 440 nm, a GSB at
493 nm and a PIA at 560 nm. Apparently, the shift of the
signal is assigned to the variance of the energy structure.
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Fig. 3. The time-dependent TA spectra of Cs2TiBr6 NCs (a) at room tem-
perature and (b) at 77 K.

Considering that Cs2TiBr6 NCs have a huge potential in
the optoelectronic field,[31] the understanding of carrier re-
combination dynamics is of much importance.[32] The TA
curves of Cs2TiBr6 NCs as a function of excitation inten-
sity were probed at room temperature and 77 K (as seen
in Figs. 4(a) and 4(b)). Herein, the Cs2TiBr6 NC films in
our experiment were all prepared by drop-casting on a glass

substrate and subsequently permitting the solvent evapora-
tion at room temperature under inert gas environment.[33] The
pump flux-dependent bleaching signal of Cs2TiBr6 NCs at
room temperature and 77 K is given in Figs. 4(c) and 4(d).
Based on Poisson statistics,[34] the absorption cross sections
of these Cs2TiBr6 NCs at 400 nm can be extracted, which are
3.74× 10−13 cm2 at room temperature and 5.60× 10−13 cm2

at 77 K. Apparently, the absorption coefficient was enhanced
with the temperature decreasing. Compared with lead halide
perovskite (MAPbBr3), the absorption cross section is one or-
der of magnitude higher.[35] Simultaneously, Cs2TiBr6 NCs
process a higher absorption coefficient than double perovskite
Cs2AgInxBi1−xCl6 (x = 0,0.75) and Cs2AgSb0.25Bi0.75Br6

NCs are much better than CsPbBr3 perovskites.[36–41] Note
that the GSB curve only exhibits a simple exponential relax-
ation behavior at low excitation intensity when the temperature
is 295 K (room temperature). After the pump fluence exceeds
4.08× 1013 photon·cm−2, an excitation intensity-dependent
rapid relaxation component gradually appears in the GSB
curves, causing the GSB curves exhibiting an apparent multi-
exponential relaxation behavior. Moreover, its weight seems
to enhance with the excitation intensity.[42–46] The similar phe-
nomenon was observed at 77 K. Based on the analysis of TA
data, it is found that the recombination rate constants can be
quantitatively ascertained by employing the polynomial rate
equation[32]

dn
dt

=−k1n−k2n2, (1)

where n denotes the initial carrier density; k1 and k2 are the
monomolecular and bimolecular recombination rate constants,
respectively. In other words, the Auger recombination pro-
cess did not appear in the GSB curves, even though the inten-
sity has increased to 13.41×1013 photon·cm−2. This suggests
that the carrier diffusion velocity in Cs2TiBr6 NCs film is re-
ally rapid, which can restrict the happening of Auger recom-
bination. After fitting, these recombination rate constants of
Cs2TiBr6 NCs can be extracted from the excitation intensity-
dependent TA curves and summarized in Figs. 4(c) and 4(d).
As the temperature decreases to 77 K, the monomolecular
recombination constant k1 apparently decreases from 9.5×
109 s−1 to 6.2× 109 s−1, meanwhile the bimolecular recom-
bination constant k2 increases from 0.9× 10−9 cm3·s−1 to
3.1×10−9 cm3·s−1. Generally speaking, k2 of Cs2TiBr6 NCs
film is smaller in comparison with other conventional per-
ovskite materials,[19,45,47,48] suggesting that the loss originated
from bimolecular recombination in devices based on Cs2TiBr6

NCs should be less than that based on other perovskite mate-
rials. According to the previous report,[49] the thermally acti-
vated charge trapping model can be responsible for this phe-
nomenon. As the temperature decreases, the activity of carri-
ers gradually weakens, compelling the carriers to spend much
time overcoming the energy barrier and recombining with the
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shallow defects. In this situation, the monomolecular recom-
bination constant has to decrease with temperature dropping.
Meanwhile, the carriers left in the intra-band apparently in-
crease, which enhances the bimolecular recombination con-
stant. Moreover, the decreasing temperature can lead to the
shrinkage of the lattice and up shift the distribution of defects,

which restricts the capture of carriers originated from the de-
fects. This can also restrict the monomolecular recombination.
On the other hand, the decreasing temperature restricts the vi-
bration of the lattice and weakens the carrier–phonon scatter-
ing, which facilitates the migration of carriers and accelerates
the monomolecular recombination simultaneously.
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Besides the temperature-dependent energy band and car-
rier properties, the traditional perovskite NCs often ex-
hibit excellent two-photon absorption (TPA) properties and
have a huge potential in the field of conventional electronic
switches.[50] Herein, the TPA properties of Cs2TiBr6 NCs
were measured by excitation intensity-dependent open-hole
Z-scan technique,[51,52] as shown in Fig. 5, showing that the
valley of Cs2TiBr6 NCs is estimated to be 1.34× 10−3 M,
according to the linear absorption coefficient. The scattered
data and systematic asymmetry in baselines are usually caused
by laser instability and surface imperfection and can be cor-
rected by the low intensity background responses. Moreover,
the contribution from the solvent has been excluded in our ex-
periment. The obtained data clearly indicates a reverse sat-
urable absorption type of behavior and the depth of valley is
apparently enhanced with the excitation intensity. By fitting
the Z-scan curves, the two-photon absorption coefficients (β )
of Cs2TiBr6 NCs were measured and shown as the inset of
Fig. 5, which is almost independent of the excitation intensity.
Finally, the two-photon absorption (TPA) cross section (σTAP)
of Cs2TiBr6 NCs is estimated to be 1070 GM, which is ap-
parently larger than that of other typical perovskite bromide

materials.[53] Apparently, Cs2TiBr6 NCs can provide broad
bandwidth unattainable by conventional electronic switches
owing to their nonlinear optical properties.
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3. Conclusion and perspectives

In summary, we report on the synthesis of lead-free dou-
ble perovskite Cs2TiBr6 NCs and confirm its photo-physical
properties based on multi-spectroscopy. It is interesting to find
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that the energy band structure of Cs2TiBr6 NCs changes a little
with temperature decreasing. In addition, the carrier recombi-
nation, involving monomolecular and bimolecular, occurring
in the Cs2TiBr6·NC films has been further investigated by TA
technique, indicating that the monomolecular recombination
decreases with the temperature lowing, yet the bimolecular re-
combination shows opposite tendency. Moreover, the nonlin-
ear optical properties of Cs2TiBr6·NC are studied and its TPA
section is estimated to be 1070 GM based on the excitation
intensity-dependent Z-scan technique, which excludes the in-
terference of excitation intensity. This provides a comprehen-
sive insight into the photo-physical properties of double per-
ovskite NCs, suggesting that this type of perovskite nanoma-
terials have great potential in the fields of conventional elec-
tronic switches.
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