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Self-error-rejecting multipartite entanglement purification for
electron systems assisted by quantum-dot spins

in optical microcavities
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We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entan-
gled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps.
One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the
same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2 ≤ M < N)
in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-
electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works
faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited
coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.

Keywords: quantum communication, entanglement purification, electron-spin system
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1. Introduction
Entanglement lies at the heart of quantum mechanics and

is a fundamental resource in quantum information processing
(QIP), especially for accelerating quantum computation[1–3]

and creating secure quantum communication, such as
quantum teleportation,[4] quantum key distribution,[5–10]

quantum secure direct communication,[11–19] quantum se-
cret sharing,[4,20,21] and so on. Multipartite entangled
systems[23–26] shared by the detached parties in remote lo-
cations are in a maximally entangled state for the security
and the efficiency of quantum communication. However, in a
practical transmission, the multipartite propagated away from
each other are bound to sustain channel noises, which will
inevitably degrade the entanglement or even make the maxi-
mally entangled state change into a mixed one, making quan-
tum communication insecure. In order to establish an exten-
sive quantum network, the quantum repeater is used to restrain
the decoherence caused from the environmental noise.[27] En-
tanglement purification, which is one of the key constituents
for quantum repeaters in the quantum communication, can
distil some high-fidelity entangled quantum systems from the
mixed entangled ones.[28–32]

The initial entanglement purification protocol (EPP) by
Bennett et al.[33] and that by Deutch et al.[34] were pre-
sented, resorting to perfect controlled-not (CNOT) gates. Sub-
sequently, an EPP[35] based on linear optical elements and
single-photon detectors and an efficient EPP[36] with a cur-
rently obtainable parametric down-conversion (PDC) source
assisted by cross-Kerr nonlinearity were introduced. EPPs

have been presented in various ways, mainly consisting of con-
ventional entanglement purification protocols (CEPPs)[33–40]

and the deterministic entanglement purification protocols
(DEPPs).[41,42] The latter referred to two-step DEPP based on
hyerentanglement[41] and one-step DEPP based on the spatial
entanglement of a pragmatic PDC source and linear optical
elements.[42] Recently, much attention has been drawn to hy-
erentanglement purification protocols (hyper-EPPs).[43–47] For
instance, Ren et al.[43] proposed the first two-photon hyper-
EPP in the mixed polarization-spatial hyperentanglement Bell
states for bit-flip errors, resorting to the nonlinear optical prop-
erty of a nitrogen-vacancy center embedded in a photonic crys-
tal cavity.

However, most of the EPPs[33–42] and hyper-EPPs[43–47]

have been aimed at bipartite entangled and hyperentangled
systems, respectively, and there are only few multipartite en-
tanglement purification protocols (MEPP), including high-
dimension HEPPs.[48–50] The first MEPP with CNOT gates
to purify multipartite entangled systems in a Werner-type
state by Murao et al.,[48] and then the other one to purify
high-dimensional multipartite quantum systems by Cheong et
al.[49] were proposed. Sequentially, a feasible MEPP[50] and
an efficient MEPP[51] were proposed in a Greenberger–Horn–
Zeilinger (GHZ) state with nondestructive quantum nondemo-
lition detectors (QND), which were available to perform itera-
tively the MEPPs.

The EPP for electron-spin systems also plays a signifi-
cant role in the quantum communication and quantum com-
putation. For example, Sheng et al.[52] presented an MEPP
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for electron-spin states. The original fidelity of the MEPP
was required to be lager than 0.5, meanwhile, much entan-
gled quantum resource was discarded, leading to the rela-
tively low efficiency. Recently, semiconducting quantum dot
(QD) embedded in a optical microcavities is the best ser-
vice for solid-state qubit especially in QD-spin QIP,[53] ow-
ing to the electronic spin confined in a charged QD pos-
sessing µs coherence time[54] and ps time-scale single-qubit
manipulation[55,56] for controlling and measuring the spin
state. Many researchers have devoted much effort to im-
proving photon-QD-spin interactions by the integration of
charged QDs amalgamated with nanophotonic micropillar
cavities in experiment recently.[56–58] Besides, an entangled
beam splitter,[59] a flexible two-electron-spin EPP,[60] and an
optical Faraday rotation[61] can be generated with an electron-
spin QD coupled to a microcavity.

In this article, we present an efficient MEPP for N-
electron-spin systems in a GHZ state by exploiting the single-
side cavity-spin-coupling system. First, we can obtain a high-
fidelity N-electron-spin ensemble directly with fidelity-near-
unity parity-check devices (PCDs), similar to the conventional
MEPPs with perfect controlled-not gates.[48] Subsequently,
the recycling MEPP with the entanglement link is used to re-
produce some N-electron-spin entangled systems from sub-
spaces. In detail, the parties in quantum communication first

distil some entangled M-electron-spin subsystems (2 ≤ M <

N), which are discarded in the previous MEPPs,[48–50] and
then they reproduce some N-electron-spin entangled systems
with entanglement link.

2. Establishing an error-heralded parity-check
device by QD-cavity system
As shown in Fig. 1, it is a structure diagram of the

single-sided QD-cavity system. A self-organized In(Ga)As
or interface-perturbation GaAs QD are placed in the wave
belly of a microcavity, in which the Bragg layer at the top
is all reflective and the Bragg layer at the bottom is partially
reflective.[61] When the QD has an additional electron injec-
tion, a negative exciton (X−) composed of two electrons and a
hole can be formed optical excitation. According to Pauli ex-
clusion principle, the electron spin state ↑ (↓) interacts with left
(right) rotationally polarized light |L〉 (|R〉), respectively. Here
↑ (↓) represents the spin state of the extra electron, and its pro-
jection on the z axis is |+ 1

2 〉 (|− 1
2 〉). | ↑↓⇑〉 (| ↓↑⇓〉) represents

the hole-spin state of the negative exciton (X−), and its projec-
tion on the z axis is |+ 3

2 〉 (|− 3
2 〉). The coupled R-polarized (L-

polarized) photon and the uncoupled L-polarized (R-polarized)
photon get different phases and amplitudes when they are re-
flected by the cavity. The reflection coefficient[61–67]

r(ω) = 1− κ [i(ωX− −ω)+ γ/2]
[i(ωX− −ω)+ γ/2] [i(ωc−ω)+κ/2+κs/2]+g2 (1)

can be obtained by solving the Heisenberg–Langevin equa-
tions of the motion in Eq. (2) for the cavity field operator â
and negative exciton X− operator σ̂− driven by the input field
operators âin, and combing the relation between the input field
operators âin and the output field operators âout in the weak
excitation approximation 〈σ̂z〉 '−1,[61–67] where the QD spin
dominantly occupies the ground state

dâ
dt

= −
[

i(ωc−ω)+
κ

2
+

κs

2

]
â−g σ̂−−

√
κ âin,

dσ̂−
dt

= −
[

i(ωX− −ω)+
γ

2

]
σ̂−−gσ̂zâ,

âout = âin +
√

κ â. (2)

Here, ωc, ωX− , and ω represent the microcavity frequency, the
transition frequency of negative exciton X− and the input pho-
ton frequency, respectively. g is the coupling strength between
the QD and the single-sided microcavity, κ , κs, and γ are the
decay rate of single-sided microcavity, leakage rate of single-
sided microcavity, and decay rate of negative exciton X−, re-
spectively. In the case of coupling strength g = 0 (uncoupled

cavity), the reflection coefficient becomes

ro(ω) =
i(ωc−ω)−κ/2+κs/2
i(ωc−ω)+κ/2+κs/2

. (3)

Therefore, the interaction between the photon and the single-
sided cavity-QD system can be expressed as

|L,↑〉 → r(ω)|L,↑〉, |R,↑〉 → ro(ω)|R,↑〉,
|R,↓〉 → r(ω)|R,↓〉, |L,↓〉 → ro(ω)|L,↓〉. (4)

|­¯Ý>

|­> |¯>

|¯­ß>

L> R>

ain aout

Fig. 1. Schematic diagram of a single-sided QD-cavity system, and the op-
tical transitions of a QD.

We can construct a error-heralded QD block by comb-
ing the above QD-cavity system and linear optical elements,
as shown in Fig. 2(a). Suppose that the single photon in the
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left-polarized state |L〉 is input into the module, and the ini-
tial state of the QD spin in the single-sided cavity is |ϕ+〉 =
(1/
√

2)(| ↑〉+ | ↓〉). After the injected photon subsequently
passes through half wave plate Hp1, QD block, Hp2, circular
polarization beam splitter (CPBS), the state of the whole sys-
tem evolves from |Φ0〉= |L〉⊗ |ϕ+〉 to

|L〉⊗ |ϕ+〉 → P|R〉|ϕ−〉+Q|L〉|ϕ+〉. (5)

Here, P, Q, and |ϕ−〉 represent (1/2)[ro(ω) − r(ω)],
(1/2)[ro(ω) + r(ω)], and (1/

√
2)(| ↑〉 − | ↓〉), respectively.

Finally, the left-polarized state |L〉 reflected by the CPBS is
detected by a single-photon detector (D). If the D responds,
the error is detected. That is, the photon passing through the
quantum block neither changes its own polarization state nor
the state of the QD spin. On the contrary, if there is no re-
sponse from the D, the photon passes through the quantum
block, which can predict the error. Similarly, if the electron
spin state is |ϕ−〉, the final state of the system can be expressed

as the following expression

|L〉⊗ |ϕ−〉 → P|R〉|ϕ+〉+Q|L〉|ϕ−〉. (6)

We can construct a self-error-rejecting electron-spin
parity-check device (PCD) by the error-heralded QD block, as
shown in Fig. 2(b). The quantum states of two-electron spins
e1e2 of two QD-cavity systems can be described as

|φ±〉= 1√
2
(| ↑↑〉± | ↓↓〉)e1e2 ,

|ψ±〉= 1√
2
(| ↑↓〉± | ↓↑〉)e1e2 . (7)

We input a single photon in left-polarized state |L〉 into a quan-
tum circuit of a error-heralded PCD. After the photon passes
through VBS, the left-polarized photon |L〉 in the lower mode
1 subsequently passing through the error-heralded QD1 block,
X1, QD2 block, X2, and BS, meanwhile in the upper mode 2
combining again at the BS, is detected by the detector D1′ or
D2′ .

(b)

1

2
DL

VBS BS

X2

D2′

X1

D1′

PCD

QD
block

QD
block

D1 D2

L>

HP1 HP2

D

CPBS

QD block

(a)

Fig. 2. (a) Schematic diagram of the error-heralded QD block. (b) Schematic diagram of error-heralded parity-check device (PCD) on electron-spin
system. HPi (i= 1,2) is a half-wave plate that performs Hadamard operation on the photon, i.e., |R〉→ (|R〉+ |L〉)/

√
2, and |L〉→ (|R〉−|L〉)/

√
2. CPBS

represents a circular polarization beam splitter, which transmits a right-polarized photon |R〉 and reflects a left-polarized photon |L〉. D j ( j = 1,2,1′,2′)
is a single-photon detector. VBS represents a non-equilibrium beam splitter with a transmission coefficient of (1+P4)−1/2 and a reflection coefficient of
P2/[(1+P4)]1/2. BS is a 50 : 50 beam splitter. Xk (k = 1,2) is a half-wave plate, which performs bit-flip operation on the photon σ

p
x = |R〉〈L|+ |L〉〈R|.

During the single photon scattering processes, if the pho-
ton is reflected by the error-heralded QD-cavity block, it will
trigger the detector either D1 or D2, which means the fail-
ure of the PCD. In detail, when the single photon detector
D1 triggers, the error occurs in the parity measurement task
of this round, another single photon can be input to complete
the parity outcome of the two-electron spins. On the premise
of ignoring the photon scattering with inherent losses chan-
neled into its environment in first QD block, the photon passes
through the half-wave plate X1 when the D1 does not respond.
When the single photon detector D2 responds, after the phase-
flip operation σ e

x = | ↑〉〈↑ | − | ↓〉〈↓ | on the second electron
spin, another single photon is input. If the input photon is
transmitted through the two error-heralded QD blocks, there
is no click of the single-photon detector D1 or D2. At last,
the two modes of the photon, passing though different optical
paths, will come together again through the BS and be de-
tected, completing the PCD of the two-electron spins. The BS

performs operations

1√
2
(|L〉2 + |L〉1)→ |L〉2′ ,

1√
2
(|L〉2−|L〉1)→ |L〉1′ . (8)

The evolutions of the whole system consisting of two-
electron spins and the injected photon are described as

|φ±〉|L〉 PCD−−→ β |φ±〉|L〉2′ , |ψ±〉|L〉
PCD−−→ β |ψ±〉|L〉1′ , (9)

where β = [2P4/(1+P4)]1/2. |L〉2′ (|L〉1′) means that the pho-
ton is detected by D2′ (D1′). If D2′ (D1′ ) responds, the two-
electron spins are even (odd) parity. The PCD is established to
perform our MEPP.

3. High-efficiency three-electron-spin EPP for
bit-flip errors
For three-electron-spin entangled states, there are eight

GHZ states written as follows:

|φ±0 〉ABC =
1√
2
(| ↑↑↑〉± | ↓↓↓〉)ABC,
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|φ±1 〉ABC =
1√
2
(| ↓↑↑〉± | ↑↓↓〉)ABC,

|φ±2 〉ABC =
1√
2
(| ↑↓↑〉± | ↓↑↓〉)ABC,

|φ±3 〉ABC =
1√
2
(| ↑↑↓〉± | ↓↓↑〉)ABC. (10)

Here, the subscripts A, B, and C denote the three-electron spins
sent to Alice, Bob, and Charlie, respectively. Suppose that
the original three-electron-spin GHZ state transmitted among
the three parties is |φ+

0 〉ABC. As we know, the noisy channel
will inevitably change a pure entangled state ensemble into a
mixed one. In other words, when the initial |φ+

0 〉ABC turns into
|φ+

i 〉ABC by taking place a bit-flip error on the i-th (i = 1,2,3)
qubit, meanwhile |φ+

0 〉ABC evolves to |φ−0 〉ABC due to appear-
ing a phase-flip error. Sometimes, both a bit-flip error and a
phase-flip error will take place on the three-electron-spin sys-
tem with the state |φ−i 〉ABC. Generally, a phase-flip error can
be transformed into a bit-flip error assisted by a bilateral local
operation. Therefore, we only discuss the MEPP for bit-flip
errors of three-electron-spin mixed states in detail.

Suppose that Alice, Bob, and Charlie share a three-
electron-spin ensemble ρ after the transmission of qubits over
the noisy channels,

ρ = f0|φ+
0 〉〈φ

+
0 |+ f1|φ+

1 〉〈φ
+
1 |

+ f2|φ+
2 〉〈φ

+
2 |+ f3|φ+

3 〉〈φ
+
3 |. (11)

Here, f0 = 〈φ+
0 |ρ|φ

+
0 〉 is the fidelity of the quantum systems

passed through noisy channels, and satisfies f0+ f1+ f2+ f3 =

1. The density matrix ρ means that there is a bit-flip er-
ror on the i-th (i = 1,2,3) electron spin of the quantum sys-
tem with a probability of fi (i = 1,2,3). For obtaining some
high-fidelity entangled three-electron-spin entangled systems,
three parties need a pair of three-electron-spin quantum sys-
tems with A1B1C1 and A2B2C2, respectively. Then, the state
of six-electron-spin system ρA1B1C1 ⊗ ρA2B2C2 can be viewed
as the mixture of the sixteen pure states, i.e., |φ+

i 〉⊗|φ
+
j 〉 with

the probability of fi f j (i, j = 0,1,2,3). Here, the electron-spin
with subscripts A1 and A2 belong to Alice, B1 and B2 belong to
Bob, and C1 and C2 belong to Charlie. Our efficient MEPP for
three-electron-spin entangled systems with the bit-flip errors
is divided into two purified steps.

3.1. The first step of three-electron-spin EPP for bit-flip
errors with PCDs

The process of the first step of our MEPP is shown in
Fig. 3(a). The left-circular-polarized states |L〉A, |L〉B, and
|L〉C are injected into the quantum circuit by Alice, Bob, and
Charlie, respectively. At first three parts perform the PCDs
on two-electron spins A1A2, B1B2, and C1C2, respectively, and
then measure the electron spins A2, B2, C2, respectively, with
the basis MX , i.e., |+〉 = 1√

2
(| ↑〉+ | ↓〉), and |−〉 = 1√

2
(| ↑

〉− | ↓〉), which is equivalent to performing a Hadamard gate
on the electron spin using a π/2 microwave pulse.[56,57]

(i) Three parties compare the parity outcomes of their
thtee electron-spin pairs with PCDs. If Alice, Bob, and Char-
lie can get the same parity-mode outcome as each other,
which corresponds to the identity-combination terms |φ+

i 〉⊗
|φ+

j 〉 (i = j ∈ {0,1,2,3}), they keep their two electron-spin
pairs. The same parity-mode outcome can be divided into two
groups. If the injected three photons trigger the upper detec-
tors DA2′ , DB2′ , and DC2′ , the entangled electron-spin systems
collapse to four even-parity states as follows:

|Φ0〉 =
1√
2
(| ↑↑↑〉A1B1C1 | ↑↑↑〉A2B2C2

+ | ↓↓↓〉A1B1C1 | ↓↓↓〉A2B2C2),

|Φ1〉 =
1√
2
(| ↓↑↑〉A1B1C1 | ↓↑↑〉A2B2C2

+ | ↑↓↓〉A1B1C1 | ↑↓↓〉A2B2C2),

|Φ2〉 =
1√
2
(| ↑↓↑〉A1B1C1 | ↑↓↑〉A2B2C2

+ | ↓↑↓〉A1B1C1 | ↓↑↓〉A2B2C2),

|Φ3〉 =
1√
2
(| ↑↑↓〉A1B1C1 | ↑↑↓〉A2B2C2

+ | ↓↓↑〉A1B1C1 | ↓↓↑〉A2B2C2). (12)

In contrast, if the injected three photons trigger the lower de-
tectors DA1′ , DB1′ , and DC1′ , the entangled electron-spin sys-
tems collapse to four odd-parity states as follows:

|Ψ0〉 =
1√
2
(| ↑↑↑〉A1B1C1 | ↓↓↓〉A2B2C2

+ | ↓↓↓〉A1B1C1 | ↑↑↑〉A2B2C2),

|Ψ1〉 =
1√
2
(| ↓↑↑〉A1B1C1 | ↑↓↓〉A2B2C2

+ | ↑↓↓〉A1B1C1 | ↓↑↑〉A2B2C2),

|Ψ2〉 =
1√
2
(↑↓↑〉A1B1C1 | ↓↑↓〉A2B2C2

+ | ↓↑↓〉A1B1C1 | ↑↓↑〉A2B2C2),

|Ψ3〉 =
1√
2
(| ↑↑↓〉A1B1C1 | ↓↓↑〉A2B2C2

+ | ↓↓↑〉A1B1C1 | ↑↑↓〉A2B2C2). (13)

The states |Ψ0〉, |Ψ1〉, |Ψ2〉, and |Ψ3〉 can be transformed into
|Φ0〉, |Φ1〉, |Φ2〉, and |Φ3〉 by a bit-flip operation σ e

x = | ↑〉〈↓
|+ | ↓〉〈↑ | on the electron spin A2, B2, and C2, respectively.
Subsequently, Alice, Bob, and Charlie measure with the basis
MX = {|+〉, |−〉} on the electron spin A2, B2, and C2, respec-
tively. The states |Φ0〉, |Φ1〉, |Φ2〉, and |Φ3〉 can be changed
into the states |Φ ′0〉, |Φ ′1〉, |Φ ′2〉, and |Φ ′3〉, respectively. Here,

|Φ ′0〉 =
1
4
[|φ+

0 〉A1B1C1(|+++〉+ |+−−〉

+ |−+−〉+ |−−+〉)A2B2C2

+ |φ−0 〉A1B1C1(|++−〉+ |+−+〉
+ |−++〉+ |−−−〉)A2B2C2 ],
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|Φ ′1〉 =
1
4
[|φ+

1 〉A1B1C1(|+++〉+ |+−−〉

−|−+−〉−|−−+〉)A2B2C2

+ |φ−1 〉A1B1C1(|++−〉+ |+−+〉
−|−++〉− |−−−〉)A2B2C2 ],

|Φ ′2〉 =
1
4
[|φ+

2 〉A1B1C1(|+++〉− |+−−〉

+ |−+−〉−|−−+〉)A2B2C2

+ |φ−2 〉A1B1C1(|++−〉−|+−+〉
+ |−++〉− |−−−〉)A2B2C2 ],

|Φ ′3〉 =
1
4
[|φ+

3 〉A1B1C1(|+++〉− |+−−〉

−|−+−〉+ |−−+〉)A2B2C2

+ |φ−3 〉A2B1C1(|++−〉−|+−+〉
−|−++〉+ |−−−〉)A2B2C2 ]. (14)

Obviously, the results can be divided into two groups con-
sidering the number of |−〉. If the number of the outcomes
|−〉 is even, Alice, Bob, and Charlie obtain the GHZ states
|φ+

0 〉A1B1C1 , |φ+
1 〉A1B1C1 , |φ+

2 〉A1B1C1 , and |φ+
3 〉A1B1C1 with the

probabilities 1
2 f 2

0 , 1
2 f 2

1 , 1
2 f 2

2 , and 1
2 f 2

3 , respectively. Other-
wise, if the number of the outcomes |−〉 is odd and the three
parties obtain the other four states |φ−0 〉A1B1C1 , |φ−1 〉A1B1C1 ,
|φ−2 〉A1B1C1 , and |φ−3 〉A1B1C1 with the probabilities 1

2 f 2
0 , 1

2 f 2
1 ,

1
2 f 2

2 , and 1
2 f 2

3 , respectively. Alice, Bob, and Charlie can trans-
form the states |φ−0 〉, |φ

−
1 〉, |φ

−
2 〉, and |φ−3 〉 into the states |φ+

0 〉,
|φ+

1 〉, |φ
+
2 〉, and |φ+

3 〉 with a phase-flip operation σ e
x on the

first electron spin A1, B1, and C1, respectively. Therefore, Al-
ice, Bob, and Charlie can obtain the three-electron-spin maxi-
mally entangled states obtained from ideal-combination items
|φ+

i 〉A1B1C1 ⊗ |φ
+
j 〉A2B2C2 (i = j ∈ {0,1,2,3}) and the corre-

sponding probability, as shown in Table 1, which are only one
bit-flip error taking place. That is, by keeping the instances in
which all the three parties obtain the same output modes, and
then measuring the number of |−〉, Alice, Bob, and Charlie
can obtain a new three-electron-spin ensemble in the state

ρ
′
A1B1C1

= f ′0|φ+
0 〉〈φ

+
0 |+ f ′1|φ+

1 〉〈φ
+
1 |

+ f ′2|φ+
2 〉〈φ

+
2 |+ f ′3|φ+

3 〉〈φ
+
3 |, (15)

where f ′0 = f 2
0 /( f 2

0 + f 2
1 + f 2

2 + f 2
3 ), f ′1 = f 2

1 /( f 2
0 + f 2

1 + f 2
2 +

f 2
3 ), f ′2 = f 2

2 /( f 2
0 + f 2

1 + f 2
2 + f 2

3 ), and f ′3 = f 2
3 /( f 2

0 + f 2
1 +

f 2
2 + f 2

3 ). The fidelity f ′0 > f0 if f0 satisfies the relation f0 >

{3−2 f1−2 f2− [1+4( f1+ f2)−12( f 2
1 + f 2

2 )−8 f1 f2]
1/2}/4.

With three symmetric noisy channels f1 = f2 = f3 < f0, the
fidelity of the state |φ+

0 〉 will be improved when its original
fidelity f0 > 0.25.

Table 1. The states of the three-electron-spin systems obtained from identity-combination items and the corresponding probabilities
(suppose x = A1B1C1 and y = A2B2C2 for simplification).

Identity-combination items |φ+
0 〉x⊗|φ

+
0 〉y |φ+

1 〉x⊗|φ
+
1 〉y |φ+

2 〉x⊗|φ
+
2 〉y |φ+

3 〉x⊗|φ
+
3 〉y

Three-electron-spin states |φ+
0 〉x |φ+

1 〉x |φ+
2 〉x |φ+

3 〉x
Probabilities f 2

0 f 2
1 f 2

2 f 2
3

(ii) In the above three-electron-spin EPP for bit-flip
errors, the three parties obtain different parity-mode out-
puts, which are not taken into consideration, i.e., the cross-
combination terms |φ+

i 〉 ⊗ |φ
+
j 〉 (i 6= j ∈ {0,1,2,3}), as the

item |φ+
j 〉A1B1C1 ⊗ |φ

+
i 〉A2B2C2 has the same probability fi f j

to the item |φ+
i 〉A1B1C1 ⊗ |φ

+
j 〉A2B2C2 , (i 6= j ∈ {0,1,2,3}).

However, they can utilize the cross-combination items to pro-
duce some high-fidelity two-electron-spin entangled states. To
be detail, we take the cross-combination terms |φ+

0 〉A1B1C1 ⊗
|φ+

2 〉A2B2C2 and |φ+
2 〉A1B1C1 ⊗|φ

+
0 〉A2B2C2 as an example to dis-

cuss. As for the others, we could deal with them in the same
way with or without a little modification. With PCDs, two
parts obtain the same parity modes as each other when they
measure their photons, we keep their two electron-spin pairs.
If the injected three photons trigger the upper detectors DA2′ ,
DC2′ , and the lower one DB1′ , the six-electron-spin entangled
systems collapse into the quantum states as follows:

|Ω1〉 =
1√
2
(| ↑↑↑〉A1B1C1 | ↑↓↑〉A2B2C2

+ | ↓↓↓〉A1B1C1 | ↓↑↓〉A2B2C2),

|Ω2〉 =
1√
2
(| ↑↓↑〉A1B1C1 | ↑↑↑〉A2B2C2

+ | ↓↑↓〉A1B1C1 | ↓↓↓〉A2B2C2). (16)

In contrast, if the injected three photons trigger the lower de-
tectors DA1′ , DC1′ , and the upper one DB2′ , the six-electron-
spin entangled systems collapse into the quantum states as fol-
lows:

|Ω3〉 =
1√
2
(| ↑↑↑〉A1B1C1 | ↓↑↓〉A2B2C2

+ | ↓↓↓〉A1B1C1 | ↑↓↑〉A2B2C2),

|Ω4〉 =
1√
2
(| ↑↓↑〉A1B1C1 | ↓↓↓〉A2B2C2

+ | ↓↑↓〉A1B1C1 | ↑↑↑〉A2B2C2). (17)

That is, Alice, Bob, and Charlie can acquire a high-fidelity
two-electron-spin entangled state |φ+〉A1C1 from the six-
electron-spin state |Ω1〉. In detail, Alice and Charlie measure
their electron spins A2 and C2, respectively, and Bob measures
two-electron spins B1 and B2 with the basis MX = {|+〉, |−〉}.
The states |Ω1〉 can be changed into the states |Ω ′1〉. Here,

|Ω ′〉1 =
1
2
[|φ+〉A1C1(|++++〉− |++−−〉

+ |+−+−〉−|+−−+〉
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+ |−++−〉−|−+−+〉
+ |−−++〉− |−−−−〉A2C2B1B2

+ |φ−〉A1C1(|+++−〉−|++−+〉
+ |+−++〉− |+−−−〉
+ |−+++〉− |−+−−〉
+ |−−+−〉−|−−−+〉)A2C2B1B2)]. (18)

Alice and Charlie obtain the two-electron-spin entangled state
|φ+〉A1C1 when the number of the outcomes |−〉 is even. When
the number of the outcomes |−〉 is odd, Alice and Char-
lie obtain the two-electron-spin entangled state |φ−〉A1C1 and
they can transform the state |φ−〉A1C1 into the state |φ+〉A1C1

by performing a phase-flip operation σ e
x on the electron C1.

For the other three states |Ωi〉 (i = 2,3,4), Alice, Bob, and
Charlie can also obtain the two-electron-spin entangled state
|φ+〉A1C1 with the same principle. That is, three parts can ob-
tain the two-electron-spin maximally entangled state |φ+〉A1C1

from the cross-combination terms |φ+
0 〉A1B1C1 ⊗ |φ

+
2 〉A2B2C2

and |φ+
2 〉A1B1C1 ⊗|φ

+
0 〉A2B2C2 with the probability of 2 f0 f2. In

the same way, Alice, Bob, and Charlie can obtain the two-
electron-spin maximally entangled states |ψ+〉A1B1 , |ψ+〉A1C1

and |ψ+〉B1C1 from the cross-combination terms |φ+
i 〉A1B1C1 ⊗

|φ+
j 〉A2B2C2 (i 6= j ∈ {0,1,2,3}), and the corresponding prob-

ability shown in Table 2. The total states of the two-electron-
spin systems could be described as

ρA1B1 = 2 f0 f3|φ+〉A1B1〈φ
+|+2 f1 f2|ψ+〉A1B1〈ψ

+|,
ρA1C1 = 2 f0 f2|φ+〉A1C1〈φ

+|+2 f1 f3|ψ+〉A1C1〈ψ
+|,

ρB1C1 = 2 f0 f1|φ+〉B1C1〈φ
+|+2 f2 f3|ψ+〉B1C1〈ψ

+|. (19)

Provided that f1 = f2 = f3, and f0 > f1, the density matrices
in Eq. (19) can simplify

ρ
′
AB = f ′0|φ+〉AB〈φ+|+ f ′1|ψ+〉AB〈ψ+|,

ρ
′
AC = f ′0|φ+〉AC〈φ+|+ f ′1|ψ+〉AC〈ψ+|,

ρ
′
BC = f ′0|φ+〉BC〈φ+|+ f ′1|ψ+〉BC〈ψ+|, (20)

where f ′0 = f0/( f0 + f1), and f ′1 = f1/( f0 + f1). Further, one
can see that the purified fidelity of two-electron-spin systems
is larger than that of the original three-electron-spin systems
transmitted. For example, f (|φ+〉AB) = f ′0 > f0 under the con-
dition f0+ f1 < 1. The first step of the first round of the MEPP
process is accomplished.

GHZ

DA′

DA′
PCD

Alice

A A

DC′

DC′

Charlie

PCDPCD

Bob

B1 B C C

DB′

DB′

Bob
B C

Charlie

DA′
PCD

Alice

A1 A2

DA′

L>CL>B

L>A L>A

(a) (b)

Fig. 3. (a) The principle of the first step of our three-electron-spin
EPP for bit-flip errors with parity-check devices (PCDs). (b) The prin-
ciple of the entanglement link for reproducing a three-electron-spin en-
tangled system from two two-electron-spin entangled systems. D j ( j =
A1′,A2′,B1′,B2′,C1′,C2′) represent a single-photon detector. The black
symbol ‘•’ represents a QD spin.

Table 2. The states of the two electron-spin systems obtained from the cross-combination terms and the corresponding probabilities
(suppose that x = A1B1C1 and y = A2B2C2 for simplification).

Cross-combination terms
|φ+

0 〉x⊗|φ
+
2 〉y |φ+

0 〉x⊗|φ
+
1 〉y |φ+

0 〉x⊗|φ
+
3 〉y

|φ+
2 〉x⊗|φ

+
0 〉y |φ+

1 〉x⊗|φ
+
0 〉y |φ+

3 〉x⊗|φ
+
0 〉y

Two-electron-spin states |φ+〉A1C1 |φ+〉B1C1 |φ+〉A1B1

Probabilities 2 f0 f2 2 f0 f1 2 f0 f3

Cross-combination terms
|φ+

1 〉x⊗|φ
+
2 〉y |φ+

1 〉x⊗|φ
+
3 〉y |φ+

2 〉x⊗|φ
+
3 〉y

|φ+
2 〉x⊗|φ

+
1 〉y |φ+

3 〉x⊗|φ
+
1 〉y |φ+

3 〉x⊗|φ
+
2 〉y

Two-electron-spin states |ψ+〉A1B1 |ψ+〉A1C1 |ψ+〉B1C1

Probabilities 2 f1 f2 2 f1 f3 2 f2 f3

3.2. The second step of three-electron-spin EPP for bit-flip
errors with HL

Now the detail principle reproducing three-electron-spin
entangled systems from the above two-electron-spin entan-
gled systems with entanglement link (HL) will be presented
here. As discussed above, the two-electron spin in the origi-
nal system are symmetric to each other, we can exploit ρA1B1

and ρA2C1 as an example to describe the principle shown in
Fig. 3(b). The system composed of the four-electron spin
A1B1A2C1 is in the state ρ ′A1B1

⊗ρ ′A2C1
, which can be viewed

as the mixture of the four pure states |φ+〉A1B1 ⊗ |φ+〉A2C1 ,
|φ+〉A1B1 ⊗ |ψ+〉A2C1 , |ψ+〉A1B1 ⊗ |φ+〉A2C1 , and |ψ+〉A1B1 ⊗

|ψ+〉A2C1 with the probabilities f ′20 , f ′0 f ′1, f ′1 f ′0, and f ′21 , re-
spectively.

After Alice’s PCD, they divide the four-electron-spin sys-
tems into two cases due to different parity-mode outcomes.
If the parity of the two-electron spins A1A2 is even, the cor-
responding detector DA2′ clicked, and then Alice detects the
electron spin A2 with the basis MX = {|+〉, |−〉}, Alice, Bob,
and Charlie will obtain a three-electron-spin entangled sys-
tem in the states |φ+

0 〉, |φ
+
3 〉, |φ

+
2 〉, and |φ+

1 〉 with an auxil-
iary phase-flip operation σz on the electron spin A1. In con-
trast, if the parity of the two-electron spins A1A2 is odd, the
corresponding detector DA1′ clicked, and detects the electron
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spin A2 with the basis MX = {|+〉, |−〉}, the three parties can
acquire the same ones as the above case with a bit-flip opera-
tion σx on the electron spins A1 and C1 independently. Simi-
larly, Alice, Bob, and Charlie can reobtain the three-electron-
spin maximally entangled states |φ+

0 〉, |φ
+
3 〉, |φ

+
2 〉, and |φ+

1 〉
from the cross-combination terms |Φ+

i 〉A1B1C1 ⊗ |Φ
+
j 〉A2B2C2

(i 6= j ∈ {0,1,2,3}), and the corresponding probability shown
in Table 3. That is, with entanglement link, Alice, Bob, and
Charlie can reproduce a new ensemble for three-electron-spin
systems in the state

ρ
′′
A1B1C1

= f ′′0 |φ+
0 〉〈φ

+
0 |+ f ′′1 |φ+

1 〉〈φ
+
1 |

+ f ′′2 |Φ+
2 〉〈φ

+
2 |+ f ′′3 |φ+

3 〉〈φ
+
3 |. (21)

Here, f ′′0 = f 2
0 /( f0 + f1)

2, f ′′1 = f 2
1 /( f0 + f1)

2, and f ′′2 =

f ′′3 = f0 f1/( f0 + f1)
2. The second step of the first round of

the MEPP process is accomplished above. f ′′0 > f0 when
f0 > 0.25, which means that the three parties can reobtain a
high-fidelity three-electron-spin entangled systems from two
two-electron-spin entangled subsystems if and only if the orig-
inal fidelity of the three-electron-spin systems transmitted over
noisy channels is larger than 0.25.

Table 3. The three-electron-spin systems reobtained from two-electron-spin systems and the corresponding probabilities (suppose p = A1B1
and q = A2C1 for simplification).

Two-electron-spin states |φ+〉p⊗|φ+〉q |φ+〉p⊗|ψ+〉q |ψ+〉p⊗|φ+〉q |ψ+〉p⊗|ψ+〉q
Three-electron-spin states |φ+

0 〉A1B1C1 |φ+
3 〉A1B1C1 |φ+

2 〉A1B1C1 |φ+
1 〉A1B1C1

Probabilities f ′20 f ′0 f ′1 f ′1 f ′0 f ′21

3.3. The efficiency of three-electron-spin EPP for bit-flip
errors

After the above two purified steps, the first round of the
MEPP process is accomplished. The purified fidelity of the
three-electron-spin system A1B1C1 can be improved further by
repeating multiple rounds of the MEPP. Furthermore, the ef-
ficiency of obtaining the efficiency of three-electron-spin sys-
tem A1B1C1 after the first purification step is η1, while the
efficiency of obtaining the three-electron-spin system A1B1C1

after introducing the second purification step with HL is η2,

η1 =
3

∑
m=n=0

fm fn =
1−2 f0 +4 f 2

0
3

,

η2 =
1
2

3

∑
m6=n=0

fm fn +η1 =
2− f0 +2 f 2

0
3

, (22)

where f1 = f2 = f3 = (1− f0)/3. η1 and η2 are shown in
Fig. 4, which easily find that the efficiency η2 of our MEPP
is greatly increased. For the initial fidelity f0 < 0.5, η2 is far
larger than 2η1. Obviously, the initial fidelity f0 is smaller 0.5,
the second purified step with quantum HL plays an important
role in the first round of the MEPP process.

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

1.0

f0

η1

η2

E
ff
ic
ie
n
c
y

Fig. 4. The efficiencies η1 and η2 versus the initial fidelity f0.

In addition, the efficiency η1 of our MEPP is double as
those in Refs. [48–50] due to taking all the cases in which
all the parties obtain either even or odd parity into account
for obtaining high-fidelity three-electron-spin entangled sys-
tems. Two purified steps are independently in the next round.
That is, they can first purify two-electron-spin systems with
the fidelity f0 and then produce high-fidelity three-electron-
spin systems with entanglement link. Besides, as all quantum
operations, the PCDs and HL, will work with a near-unity fi-
delity, the MEPP here will be performed faithfully and work
without the influence from every purified operation.

4. Discussion and summary
Furthermore, our three partite EPP can be directly ex-

tended to purify N-electron-spin entangled systems, resorting
to the self-error-rejecting parity-check devices (PCDs) and en-
tanglement link. There are 2N GHZ states for an N-electron-
spin systems and can be written as

|φ±i j···k〉N =
1√
2
(|i j · · ·k〉± |ī j̄ · · · k̄〉)AB···Z . (23)

Here ī= 1− i, j̄ = 1− j, k̄= 1−k, and i, j,k∈{0,1}. |0〉≡ | ↑〉
and |1〉 ≡ | ↓〉. The subscripts A, B, . . ., and Z represent the
electrons sent to the parties Alice, Bob, . . ., and Zach, respec-
tively. That is, let us assume that the ensemble of N-electron-
spin systems after the transmission over a noisy channel is in
the state

ρN = f0|φ+
0 〉N〈φ

+
0 |+ · · ·+ fi j···k|φ+

i j···k〉N〈φ
+
i j···k|+ · · ·

+ f2N−1−1|φ
+
2N−1−1〉N〈φ

+
2N−1−1|. (24)

Here, fi j···k presents the probability that an N-electron-spin
systems is in the state |Φ+

i j···k〉N and satisfies f0 + · · ·+ fi j···k +
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· · ·+ f2N−1−1 = 1. Similarly, the whole MEPP is divided into
two steps, in order to correct bit-flip errors in multipartite en-
tangled quantum systems. The first step of the N-electron-
spin EPP with bit-flip errors from the identity-combination
terms |φ+

lr···q〉N ⊗|φ
+
i j···k〉N (l = i, r = j, . . ., or q = k), is sim-

ilar to that for three-electron-spin EPP, which only increase
the number of the PCDs and single-photon detectors shown
in Fig. 3. Besides, the parties can acquire some high-fidelity
M-electron-spin entangled systems (2 ≤ M < N) from the
cross-combination terms |φ+

lr···q〉N ⊗|φ
+
i j···k〉N (l 6= i, r 6= j, . . .,

or q 6= k). The second step of the N-electron-spin EPP re-
ceives some high-fidelity N-electron-spin entangled systems
from some high-fidelity M-electron-spin entangled systems
(2≤M < N) with entanglement link.

However, the more number of the electron spins in each
system, the more kinds of the EPP with entanglement link.
Let us take four-electron-spin systems as an example, After
Alice, Bob, Charlie, and Dean perform parity check with the
own PCDs, respectively, they distil some three-electron-spin

entangled systems and two-electron-spin entangled systems
from the 56 cross-combination terms, and then obtain some
four-electron-spin entangled systems with entanglement link.
In detail, when the number of even parity is odd, we can
achieve some three-electron-spin entangled states (ρ ′A1B1C1

,
ρ ′A1B1D1

, ρ ′A1C1D1
, and ρ ′B1C1D1

). When the number of even par-
ity is even, two-electron-spin entangled states (ρ ′A1B1

, ρ ′A1C1
,

ρ ′A1D1
, ρ ′B1C1

, ρ ′B1D1
, and ρ ′C1D1

) are achieved. In detail, for
a system composed of a three-electron-spin entangled sub-
system ρ ′A1B1C1

and a two-electron-spin entangled subsystem
ρ ′A2D1

, Alice, Bob, Charlie, and Dean can obtain a four-
electron-spin entangled system by performing the PCD and
measure on the electron-spin A2 with the basis MX as shown
in Fig. 5(a). Certainly, they can obtain a four-electron-spin en-
tangled system from the complicated system composed of two
three-electron-spin subsystems ρ ′A1B1C1

⊗ρ ′A2B2D1
as shown in

Fig. 5(b), and three two-electron-spin entangled subsystems
ρ ′A1D1

⊗ρ ′A2C1
⊗ρ ′B1C2

as shown in Fig. 5(c).
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Fig. 5. The principle of the entanglement link for producing a four-electron spin entangled system from (a) a three-electron spin entangled subsystem
and a two-electron spin entangled subsystem with a PCD, (b) two three-electron-spin entangled subsystems with two PCDs, (c) three two-electron-spin
entangled subsystems with two PCDs.
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Fig. 6. The efficiency η of error-heralded PCD in the case κs/κ = 0,
κs/κ = 0.1, and κs/κ = 0.2 represented by the green solid line, the red
dot–dash line, and the blue dot line, respectively, with ω = ωc = ωX− and
γ/κ = 0.1.

We construct the self-error-rejecting non-destructive PCD
by using the error-heralded QD blocks. During the measure-
ment process, if there is an error, the detector either D1 or
D2 responds, and the parity outcome of electron-spin quan-
tum state can be repeated until success. If the detector D′1 or

D′2 responds, the parity outcome of PCD is successful. The
fidelity of the PCD is robust, and immunes to the coupling
strength g, the microcavity decay rate κ , the microcavity leak-
age rate κs and the exciton decay rates of γ , which reduces the
requirements for the experimental conditions of the scheme.
However, the efficiency η = β 2 = 2P4/(1 + P4) of PCD is
largely affected by the all this mentioned above factors, as
shown in Fig. 6. In the case of ω = ωc = ωX− , γ/κ = 0.1,
and g/(κ + κs) > 2, the efficiency becomes η > 97.52%,
η > 78.55%, and η > 62.48%, respectively, in the condition
κs/κ = 0, κs/κ = 0.1, and κs/κ = 0.2, respectively. Further-
more, the efficiency η could be further improved via increas-
ing the effective QD-cavity coupling g/(κ +κs) and decreas-
ing the side leakage κs/κ of the cavity.

In summary, we have proposed a high-efficiency MEPP
for N-electron-spin systems in the GHZ state, resorting to
fidelity-robust PCDs and entanglement link, which contains
two steps. One is the MEPP with fidelity-robust PCDs to ob-
tain not only high-fidelity N-electron-spin entangled systems
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directly from ideality-combination items |φ+
lr...q〉N ⊗ |φ

+
i j...k〉N

(l = i, r = j, . . ., or q = k), but also high-fidelity M-electron-
spin entangled subsystems (2 ≤ M < N) from the cross-
combination terms |φ+

lr...q〉N ⊗ |φ
+
i j...k〉N (l 6= i, r 6= j, . . ., or

q 6= k). The other is the recycling MEPP to regain the N-
electron-spin entangled systems from entangled M-electron-
spin entangled states with entanglement link. In essence, the
parties distill some multipartite entangled systems from the
cases which are discarded in all existing MEPPs,[48–50] which
makes our MEPP have a higher efficiency. Moreover, two pu-
rified steps of our MEPP are independently in the next round,
which can be carried out simultaneously to economize op-
eration time. Further, the quantum circuits, fidelity-robust
PCDs make this MEPP works faithfully, as the errors com-
ing from practical scattering are converted into a detectable
failure rather than infidelity. The fidelity-robust quantum cir-
cuits could be used directly in the failure-heralded quantum
computing and quantum networks.
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