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We systematically test the performance of several Monte Carlo update schemes for the (24 1)d XY phase transition of
quantum rotor model. By comparing the local Metropolis (LM), LM plus over-relaxation (OR), Wolff-cluster (WC), hybrid
Monte Carlo (HM), hybrid Monte Carlo with Fourier acceleration (FA) schemes, it is clear that among the five different
update schemes, at the quantum critical point, the WC and FA schemes acquire the smallest autocorrelation time and cost
the least amount of CPU hours in achieving the same level of relative error, and FA enjoys a further advantage of easily
implementable for more complicated interactions such as the long-range ones. These results bestow one with the necessary
knowledge of extending the quantum rotor model, which plays the role of ferromagnetic/antiferromagnetic critical bosons
or Z, topological order, to more realistic and yet challenging models such as Fermi surface Yukawa-coupled to quantum

rotor models.

Keywords: Monte Carlo methods
PACS: 05.10.Ln

1. Introduction

The study of the critical behavior in XY model dates
back to the early stage of renormalization group.!!! To
date, very accurate analytical and numerical calculations
at the (2 + 1)d O(2) Wilson-Fisher quantum critical point
exist with high precision of exponents determined,”™!
and the rich physics of such transition related with the

10.111 superfluid—insulator!! >3] and

superconductor—insulator,
easy-plane quantum magnetic!'¥l transitions have been well
acknowledged by the community. Moreover, the presence of
Kosterlitz—Thouless (KT) transition at finite temperature also
illustrates the nontrivial topological character of the setting
and the associated vortex excitations are appearing in various
material realizations.!'>~!7! In short, the quantum XY critical-
ity and KT physics originated from the (24 1)d O(2) transition
are rich and profound.

With the acknowledgement of its importance, the renor-
malization group expansion calculations have been performed
upon the (24 1)d O(2) Wilson-Fisher fixed point and com-
parisons with the unbiased Monte Carlo simulation results are
achieved,[”8! lately conformal bootstrap calculation has also
been succeeded in (2 + 1)d O(2) QCP.[’! Among different
Monte Carlo simulation methods, such as local Metropolis,m
Swendsen—Wang and Wolff-cluster,'8:1%1 over-relaxation, 2%
worm-algorithm in the path-integral formalism,!®>!! etc, ac-
curate results have also been obtained. The remaining issue is
that there still lacks systematic analysis and comparison of the

performance of various Monte Carlo schemes, both in terms of
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the autocorrelation time and physical CPU hours in achieving
the same level of numerical accuracy. In this work, we would
like to fill in this gap.

We implement the Monte Carlo simulation for (2 + 1)d
quantum rotor model and focus on the performance of simula-
tion in the vicinity of the (2+ 1)d XY quantum critical point.
Among the five different update schemes we tested in this
work, which are comprised of local Metropolis (LM), LM plus
over-relaxation (OR), Wolff-cluster (WC), hybrid Monte Carlo
(HM), hybrid Monte Carlo with Fourier acceleration (FA), we
find that to achieve the same level of numerical accuracy of
the physics observables at the (2 + 1)d O(2) QCP, the WC and
FA schemes have the smallest autocorrelation time and cost
the least amount of CPU hours. Moreover, since FA scheme
is more versatile in terms of implementation for complicated
Hamiltonians, it has the advantage towards the future devel-
opment of the quantum many-body simulations in which the
simulation of O(2) lattice boson is the central ingredient.

For example, the Fermi surface Yukawa-coupled to crit-
ical O(2) bosons at (2+ 1)d will be the natural extension
of the system of Fermi surface Yukawa-coupled to critical
Ising bosons where concrete numerical evidences of the non-

d?>231 and quantum critical scaling beyond the

Fermi-liqui
Hertz—Mills—Moriya framework!?*l have been revealed re-
cently. Also, when the gauge field with U(1) symmetry cou-
ples to matter field at (2+ 1)d, such as the Dirac fermion in
the recent case,!”*>! although attempt succeeded in reaching

small to large system sizes and established the existence of

http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn
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the U(1) deconfined phase even if the fermion flavor is just
N; = 2,1%* larger system sizes are inevitably crucial to fur-
ther confirm such important discovery at the thermodynamic
limit. Of course, the Monte Carlo simulation of these systems
involves the update of fermionic determinant and therefore
their computational complexity also comes from the fermionic
part of the configurational weight,?%! the overall bottleneck
can be overcome by finding an efficient update scheme of the
U(1) (O(2)) gauge (boson) fields on the lattice upon the low-
energy effective model extracted from methods such as the
self-learning approach.!?’~2°1 These effective models usually
acquire long-range interactions beyond the bare bosonic ones
in the original Hamiltonian, and are difficult to handle with
conventional methods such LM and WC discussed here.

Also, the XY and KT-related physics appear in several re-
cently discovered frustrated magnets, such as the compound
of TmMgGaO,, which nicely develops a Kosterlitz—Thouless
melting of magnetic order in a triangular quantum Ising model
setting.!5-171 One could certainly envision the application of
different Monte Carlo schemes tested here to perform better
simulation upon future models of quantum XY magnets.

We end the introduction by briefly outline the structure
of the paper. In Section 2, we describe the quantum rotor
model and setup its path-integral formulation upon which the
quantum Monte Carlo simulation will be carried out. In Sec-
tion 3, we explain the different Monte Carlo update schemes
employed in this work, and pay more attention to the HM and
FA schemes which are less used in a condensed matter setting.
Then Section 4 offers the results and compares the autocorre-
lation time and CPU hours of these methods at the (2 + 1)d
0O(2) QCP in details. Section 5 summarizes the main results
and elaborates more on the relevance of this work towards to
more frontier models in which the successful simulation of the
quantum rotor model is of vital importance.

2. Model

We begin the discussion with the 2d Bose—Hubbard

model on square lattice!>!"!

Hpu=—1) (bib; "’b;bi) + % Y ni(ni—1)+p) ni, (1)
(i.J) i i
where ¢ is the nearest-neighbor hopping strength of boson,
is the chemical potential, and U is the on-site repulsion. The
creation and annihilation operators of boson satisfy commuta-
tion relation [b,-,bj-] = §;,; where 0 is the Kronecker function.
At a fixed chemical potential, Eq. (1) describes the quantum
phase transition from superfluid to Mott insulator as a func-
tion of U /t. If the average filling of boson is an integer, then
the transition is of (2+ 1)d O(2) universality with the dynami-
cal exponent z = 1, and if the average boson filling is deviated
from integer, the transition is of (2+42)d O(2) universality with
the dynamical exponent z = 2.[1%12] In the former case, one

can write b; as |b;|e'% and integrate out the amplitude fluc-
tuations. Then the BH model becomes a model of coupled

Josephson junctions, %)

u 2
Hjjzzzi:n,- —z%cos(ei—ej). )

In this form, »; runs from —eo to +oo of integers. The commu-
tation relation of the bosonic operators in Eq. (1) now trans-
lates to the commutation relation between 0 and n,

[Gl-,nj] = 15,'7]'. (3)

This means that one can write the Hamiltonian Eq. (2) in an
coherent state representation of the angle 0, and the Hamilto-

nian can be written in the form of quantum rotor model, %]

9\’
quzzzi:(—laei> —z(i%cos(ei—ej). )

The derivative d/d 0 plays the role of angular momentum
and can be further expressed in a path integral of the coherent
state such that its Monte Carlo simulation becomes possible.
We illustrative this process starting from the partition function

Z = Trexp[—B(T +V)]
U 02
= Trexp [—ﬁ <_22892 —t(Z’)cos(G,-— 61)>‘| s (5)
i i i,j

where T represents the kinetic energy and V the interaction en-
ergy. Using this shorthand notation, one can Trotter the path
integral as

Z = Tr{exp[-B(T+V)]/M}M

M-I
= lim Tr{ [1 exp[—ArT] exp[—ATV]} ., (6)

M=o =0

where the imaginary time B has been divide into M slices
with step AT = /M and we index the time slices with la-
bel / € [0,M — 1]. Now one can insert the complete sets of the
coherent state of {6(/)} at each imaginary time step in Eq. (6)
and have

M—1
Z= /DO H) ({6(1+ 1)} exp[—ATT]exp[-ATV][{6(1)}).

(7N
It is clear at this step that 6;(/) spans the space—time config-
uration space of L x L x M that we will use Monte Carlo to
sample, and the states should follow the periodic boundary
condition {6(M)} = {6(0)}. Such a setting of configuration
space is shown in Fig. 1.
Now we can look into the detailed form of V and T. For
the potential term, the coherent state is its eigenstate, thus, it
becomes

exp[-ATV][{6(])}) =€XP{ATt (Z,)COS[&(I)—GJ‘(Z)]} {6}
17./
®)
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and consequently the partition function in Eq. (7) becomes
. M-l
Z~ / D6 [] exp{k. ¥ cos[6i(l) — 6;D)]} T, (9)
1=0 (i)

where K, = tAt and the remaining kinetic partis 7; = ({6 (I +
1)} e 2T |{6(1)}). For the kinetic term, different sites com-
mute with each other, so it can be written in the form of prod-
ucts over the spatial lattice of i € L X L,
ATU  9?
T = 6;(I+1 —_—
=TT 0 oo |55 550
If one denotes J;(!) the integer-valued angular momentum at
site i and time /, then one has (6;({)|J;(1)) = ei(D6() a5 the
eigenfunction of the kinetic energy operator, then Eq. (10) be-
comes

6:(1)). (10)

FOP 0160,
{y i
(11

and eventually the partition function becomes

M—1
VRS /DG Zexp{Kx Y ) cos[6i(l) —91(1)]}
(i.j) 1=0

{7}
M—1
X exp {—A;UZ 1;) [Ji(l)]z}

M1
xexp{izi:;{)Ji(l)[ei(l—l-l)—@i(l)]}, (12)

where the configuration space is spanned by the product of
{6:(1)} and {J;(I)} withi € Lx Land ! € M.

From here on one can have two ways to simulate Eq. (12).
One is by integrating out the variable {6;(/)} and arrives at a
link model with integer-valued {J;(/)} on every bond. This
type of algorithm is not the main focus of this paper and we
discuss it in Appendix A.

superfluid 3d XY QCP disorder U/t
K, =1/UAT
K, =tAT

Fig. 1. Schematic plot of the configuration space for the (2+ 1)d O(2) XY
QCP. The blue arrows in the space—time coordinate stand for the unit vector
{6i(1)} (or {6} with  the space-time coordinate) in our simulation and
the K and K, are the anisotropic temporal and spatial interaction strengths
in the path-integral of Eq. (15). Along the axis of U/, quantum critical
point g = (U /t). separates the superfluid phase with O(2) XY symmetry-
breaking and the disordered phase where the system is in a trivial and sym-
metric state.

In this paper, however, we choose the other way to simu-
late partition function Eq. (12) by summing over the variable
{Ji(l)}. In doing so, we need to first use the Poisson sum-
mation and Gaussian integral, to change the last two terms in
Eqg. (13) and obtain

F(6) Eze—¥ﬁeim _ i /°° 4 e2FiIm o~ P e

J m=—oo

= i 1/ 2n e_zAlrl/(e_z”m)z,
oo V ATU
(13)

Since At is small, the summation over of J slowly conver-

gences. Then we perform the Villian approximation*! on
Eq. (14),
F(e) s ercos((-))’ (14)

where K; = ﬁ.

imaginary time axis and the spatial axis, the partition function

Combining the cosine functions along the

of Eq. (12) arrives at a 3d anisotropy classical XY model,

z:/'Deexp{ y K<,,,T/>cos(e,—6r,)}, (15)

(r,r!)

where K, = tA7, the summation is now over nearest-neighbor
bonds in both space and time directions, i.e., r = (i, j,/). At
the limit of AT — 0, the interactions become more and more
anisotropic as K, — 0 and K; — . However, it is easy to see
that their geometric mean K = (KXKT)% =1t/U is kept finite
and it is the control parameter of the (2 + 1)d O(2) transition.
The configuration space {6;()}, the two phases separated by
the (2+ 1)d O(2) QCP and the K, and K; couplings are de-
picted in Fig. 1.

3. Algorithm

The quantum rotor model in Egs. (2), (12) and (15) can be
solved with various Monte Carlo simulation schemes, includ-
ing the local Metropolis (LM),3!1 LM plus over-relaxation
(OR),1529 Wolff-cluster (WC),!"°! hybrid Monte Carlo (HM)
and hybrid Monte Carlo supplemented with Fourier accelera-
tion (FA).!*2! In this section, we will elucidate the basic steps
in these schemes with the detailed explanation in HM[33-3]
and FAB®! schemes as they are more used in the high-energy

community and less so to condensed matter.

3.1. Local update

This is the standard Monte Carlo update scheme, based on

3137 In the rotor model

the Metropolis—Hastings algorithm. !
setting, the update is comprised of the following steps: first
we randomly choose one site, and then try to change the 6;(1)
by a random value within O to 2. The acceptance of such
update is determined by the Metropolis acceptance ratio. To
satisfy ergodicity, we choose the site with its lattice index in

sequence and define one Monte Carlo update step as a sweep-
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ing over the entire space—time configuration when calculating
the autocorrelation time.

3.2. Over-relaxation update

Over-relaxation method!?”! is an improvement of the lo-
cal update. It was introduced in Monte Carlo evaluation of the
partition function for multiquadratic actions!*8! and has been
used in quantum rotor model.[’) For each site, the 6, can be
mapped to one unit vector ®, with its angle of rotation be-
tween 0 to 27t. The method regards the total effect of six near-
est sites (four spatial and two temporal) of = as a new vector
field H,., where H, =} ;. 1y ©,,. One can design an update
from @, to @,. such that the energy between this site and its
neighboring sites, i.e., the vector dot product of ®,. - H,. and
G)’,, - H,, is conserved. One can then easily write down the
following relation:

e :—®T+ZLH;H,,. (16)

|H, |

Therefore, the @), has the same energy with its neighbors as
that of ®,.. Thus the update can be accepted with 100% cer-
tainty, and guarantees the best acceptance rate. However, since
the OR scheme strictly conserves the energy among different
configurations, it will not be ergodic and has to be supple-
mented together with other update scheme such as the LM.
In this paper, we use one local update sweep and one over-
relaxation sweep as one update sweep for the OR scheme. As
shown in Subsection 4.2, that OR scheme is indeed faster than
the LM scheme.

3.3. Cluster update

Here we employ the Wolff update scheme, it is one of the
effective cluster update methods.!'”! Since our model is XY
model with O(2) symmetry, we can easily construct the global
Wolff cluster. The basic principle is to grow a cluster with
certain probability and change all of the sites in the cluster.
For our model, we choose a random site at first and grow the
cluster with the probability

P(0,,0,/) =1 —exp{min[0, —K(,. ,/ O, - (1 — R(#))O,]}
=1 _exp{min[07_2K<r,r’>(f"®7‘)(’f"®r’)}}a (I7)

where ®,. are the neighboring unit vectors as before and
stands for a random unit vector pointing towards a direction
within the angle of 0 to 2. We define R(#) to be the opera-
tion of mirror symmetry along the mirror direction normal to
7. In one Monte Carlo update, we randomly choose one site
and one vector 7 and grow cluster in both spatial and temporal
bonds, then reorient all the 0, in the cluster with respect to
the mirror direction normal to #. The sketch map of detailed
update process is shown in Appendix B. As will be shown in
Subsection 4.2, the cluster update has much smaller autocorre-
lation time than the local and over-relaxation update schemes.

3.4. Hybrid Monte Carlo

Hybrid Monte Carlo®*#% is widely used in high-energy
physics to simulate the equilibrium distribution of many-
particle system. Its original form is the real time-evolution
of classical system for classical Hamiltonian. It has also been
used in the condensed matter system to carry on molecular
dynamics simulation.*!! In quantum Monte Carlo, the time-
evolution can generate canonical distribution and offers a way
to produce the sample space of the Markov chain. There are
attempts to implement it to simulate correlated electron sys-
tems, for example in a Hubbard model setting.[4>43]

Here we discuss the basic steps of HM scheme, and focus
on its quantum rotor model implementation.

First, we add one auxiliary parameter p,. to every site in
the configuration space and extend the partition function in
Eq. (15) to

Z=7Zxl1
= Z(C/Dpexp <—ﬁ£)>
= ¢ [P [Doesp (B L= ) exo(-pHy(6n). (19

where [Dp =[], dp,, C is a normalization coefficient and
Hy; is the original quantum rotor Hamiltonian in Egs. (2), (12)
and (15). Now the configuration space is extend to {6, p,},
with p,. serving as the canonical momentum of the canonical

coordinate 6,.. Thus, the Hamiltonian can now be written as

2

H = K(p)+Hq(6) = §—m + Hor(6)

2 K /
_ Vv Pr_ Z %"T) cos(0, — 6,/). (19)
(r,r)

— 2m

Here, K(p) is the kinetic energy and H(6) becomes the po-
tential energy term in the hybrid Hamiltonian of Eq. (19). The
spirit of hybrid Monte Carlo is to use the Hamiltonian dynam-
ics
de, JH
dr  9p,’ dt

dp,  JH
=06, (20)

to generate a new configuration {6,., p,.} from time ¢ to time
t + € with € the footstep in time evolution of Hamiltonian dy-
namics. In the computation, one needs to solve the differential
equation to perform the time evolution. If the time interval e
is small enough, a simple process like Euler method can prop-
agate the system from the initial point at time ¢ to  +e,

peli+ = pr) #2200~ 2O 4 o
0.+ =0, + 20 — 6.+ L2D o), 2

the systematic error is of the order O(e) in the Euler method.
The Hamiltonian evolution guarantees that the update is mov-
ing along the isoenergic surface, at least in principle, and the
small energy difference will naturally give rise to high accep-
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tance ratio of the updated configuration. This is one of the
advantages of hybrid Monte Carlo.

If we conduct Ny times of the evolution, i.e., t + Ngme,
the trajectory in the phase space will move a long distance.
Such substantial update of the configuration {6,., p,.} can be
viewed as effectively global update, which could in principle
reduce the autocorrelation time at the QCP. One point we need
to pay attention to is that the detailed balance condition re-
quests the evolution in configuration space to respect the time-
reversal symmetry and actually the Euler method does not sat-
isfy this condition. So in the real simulation we use leapfrog
method of Hamiltonian dynamics,

IHq:(6(1))

peli+e/2)= )~ (/2 50 4 0(2),
0, (t+¢)=0,(1) +EW +0(é%),
prle ) = polee/2) - (e/2) PO 1))

+0(é%), (22)

with the systematical error of O(¢?).

Finally, the acceptance ratio of the {60,., p,.} configuration
after the Ny steps time evolution can be evalued with respect
to the hybrid Hamiltonian in Eq. (19),

Picc =min{1, exp[-B(H({6'.p'}) —H({6,p}))]}.

Overall, the {p} is an auxiliary degree of freedom to help to

(23)

generate uncorrelated configuration in {0} with high accep-
tance ratio. So after the acceptance of the update, one can
easily regenerate a new {p} configuration and start the next
step of the time evolution of the hybrid Hamiltonian, and can
evaluate the acceptance of such step once the Ny steps’ time
evolution is complete. This process is therefore the Markov
chain for the hybrid Monte Carlo. To satisfy the detailed bal-
ance condition, each p should be generated as

P(p) =< exp (—BPZ) : (24)

2

We summarize the steps of HM with the pseudo-code in Ta-
ble 1.

Table 1. Pseudo-code of HM algorithm.

—

. Generate {p} for each site by Gaussian distribution and obtain the
configuration {6, p}.

N

. Calculate the potential energy Hy, and Kinetic energy K of the
model in the hybrid Hamiltonian in Eq. (19).
3.don= 1, NHM
{0(1),p(t)} — {6(t+¢€),p(t +¢)} with Eq. (22)
end do
. Calculate the potential energy H[], and kinetic energy K’ of the

~

model.

W

. Use Eq. (23) to determine whether the new configuration will be
accepted.

6. Steps 1-5 are one whole update. Further iterate steps 1-5 to continue

the Markov chain.

In our simulation, we define m,. = 1 and choose ¢ = 0.3
for system size L = 6. These parameters should be tested be-
fore putting into production runs. For example, if € is too
small, each update only moves a short distance in the config-
uration space, which still leads to high autocorrelation time.
While if € is too large, the energy difference will also be large,
and cause small acceptance ratio. From the high energy HM
literature,*%! the optimized hybrid step size e is proportion to
V’%, where V = L x L X M is the space—time volume of our
configuration space. The choice of number of evolution times
Npm will directly determine the actual computation time, and
will also give rise to high autocorrelation time if it is too small.
In our simulation, we choose Ny = 20 and € is decided by the
Vi empirical rule.

Although HM provides an effective non-local update
scheme of the original configuration space {6, }, as will be
shown in Subsection 4.2, it still suffers from critical slowing
down at the (2+ 1)d XY critical point. And to finally over-
come it, we will discuss a better Monte Carlo update scheme
for the quantum rotor model: the Hybrid + Fourier accelera-
tion method.

3.5. Hybrid + Fourier acceleration

Hybrid Monte Carlo + Fourier acceleration is designed to
conquer the critical slowing down in the HM scheme. It was
firstly proposed to be combined with another molecular dy-
namic method — Langevin equation and here we use it in the
HM.[32:36]

The analysis of FA*4 reveals that the critical slowing
down comes from the fact that in the internal dynamics of
Monte Carlo, i.e., at the critical point, long (short) wave length
mode takes longer (shorter) time to evolve. And typical up-
date schemes do not respect such fact and use the same time
step to evolve both modes, which are consequently ended with
long autocorrelation time of the Monte Carlo dynamics. To
avoid this problem, one can add different footsteps to different
modes to make them evolve at the same speeds, i.e., evolve ac-
cording to the internal dispersion relation of the Hamiltonian.
In this way, the autocorrelation time at the critical point can
be reduced, as we are now updating the configuration with the
intrinsic dynamics of the Hamiltonian.

To simplify the process, for the quantum rotor model at
hand, we only consider 1D chain in the temporal direction as
cos(6;(1) — 6;(I")). Thus the force (—dHy:/d6;(1)) at (i,I) in
the hybrid time evolution is equal to sin(6;(1) — 6;(I’)). When
the difference between 6;(I) and 6;(1') is small (it is certainly
the case for our quantum rotor model along the imaginary
time, since K; = ﬁ is large at small A7), this term can be
approximated as (6;() — 6;(I")).

In the leapfrog process in HM scheme in Eq. (22), we
take € as the step size independent on the modes and from
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the discussion above, it is clear that to reduce the autocorrela-
tion time, the proper coefficients shall depend on the evolution
speed of each mode determined by the force. We can write the

We then perform discrete Fourier transformation (DFT) along

the 1D temporal chain and obtain the footstep for p-evolution,

evolution speed for every site as e 6(1) 1 Zei(pf)exp (i2”1p1> | 26)
00) = o) =~ 2 M M
= 0;(1)— 6;,(1+ 1)+ 6,(1) — 6;,(1—1). (25)‘ where p; =0,1,2,...,M — 1 and Eq. (25) then becomes
(00 = 35 T 200w (e ) - 0pejenp (e ) ~aipoene (27
= 1\{1; :2 —exp <i§;171> —exp (Enprﬂ 6;(pz)exp (ﬁfm)
= ;,;v(pf)exp <i2ﬁ’”pr) : @7

with
27pe
vi(pe) = Fi(pe) = <22cos( i ))a-(pf). (28)

We can observe that the small p; has slower speed of evo-

lution. Now adding the reciprocal of this term makes long
wave length mode evolve faster than before. Thus the leapfrog
method with Fourier acceleration can be written as

pilD)(t+¢/2) = pil)(t) — ;Flw(pf)p%(;(f)}),

6,(1)(t+€) = 6,(1)(t) +€eF ' o(pe) Fpilt +¢€/2),
piD)(t+€) = pill)(+¢/2) = 5F ' (pe)
RLAIUEE)) .
In our model, we choose ®@(p<) as
max[y/2 — 2npe
o(p) = a [\/2 2cos(57°) +C] 30)

\/2—2005(2%”)4—6‘

where the numerator is approximately equal to 2, and C is a
small non-zero constant and for each L we choose the optimal
value for it such that the autocorrelation time is the shortest
and at the same it is still finite to avoid ®(p;) becoming zero.

As will be shown in Subsection 4.2, the FA scheme could
greatly cure the critical slowing down in the bare HM scheme,
we have succeeded in doing so by applying the Fourier accel-
eration along the most important direction that dominates the
critical fluctuations — the imaginary time direction. The DFT
is thus performed along the imaginary time direction.[** In
practice, this means we need to perform DFT L x L times for
every sweep.

Before the end of this algorithm section, one more point
we would like to emphasize is that, although the HM plus
FA scheme looks a bit more complicated than the LM, OR
and WC schemes, it actually enjoys a big advantage that this

method is actually more versatile in terms of implementation
for complicated Hamiltonians. In the Hamiltonian mechan-
ics of Eq. (29), we actually do not worry too much about the
exact form of the Hamiltonian since the updates only depend
on its intrinsic dynamics. In fact, few recent examples imple-
menting the FA scheme in the electron—phonon type of prob-
lems in 2d and 3d Holstein models where the fermions and
bosons (phonons) are strongly coupled, even with long-range
interactions, **31 have been successfully shown to reveal the
interesting phenomena such as charge-density-wave transition
and superconductivity.

This completes our discussion of the five different Monte
Carlo update algorithms to solve the quantum rotor model and
now we are ready to demonstrate our simulation results and
check the different performance among the update schemes.

4. Results

In this section, we first use the Monte Carlo method to
pin down the precise position of the (2+ 1)d O(2) QCP via
finite size scaling analysis, then compare the performance of
different update schemes at the QCP.

4.1. The (2+1)d XY quantum phase transition

We first identify the position of the quantum critical point
of the quantum rotor model in Egs. (2), (12) and (15). It can be
determined by the finite size scaling analysis of the spin stiff-
ness (in the spin language) or superfluid density (in the boson
language), as

1
~ 2NL,

Y, (Ho)— (1)),

a=%y

Ps €1y}
where Hy = tATY,; ;cos(6;(I) — 6;14(l)) is the kinetic energy
of the nearest neighbor bond of both spatial directions, and
I = tATY,;;sin(6;(1) — 0;1¢(1)) is the derivative of Hy. Ac-
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cording to the (2 + 1)d XY transition, ps will follow the finite-
size scaling function
p=L7f ((g=go)L¥), (32)

with z = 1 the dynamic exponent of the (24 1)d XY univer-
sality, g = U/t is the dimensionless control parameter of the
transition, and v = 0.67 is the correlation length exponent of
the (24 1)d XY transition.[3+7:8:14]

Our results of the superfluid density are shown in Fig. 2.
In Fig. 2(a) we plot psL vs. U/t, and the simulations are
performed with B = L to make sure that we are approaching
the quantum critical point. The crossing among different sys-
tem sizes clearly demonstrates the position of the transition at
gc = (U/t). =4.25(2) with At = 0.1 which is well consis-
tent with that in previous literatures.?! Figure 2(b) depicts the
data collapse by rescaling the x-axis as (g — gC)L% with 3d XY
exponents, the collapse is in very good quality.

a
4.0- : —4—L=6
; L=8
sol” 4 L=10
’ —$— L =12
S,
< 20
1.01
0
3.6 38 4.0 42 44 46 4.8 5.0
U
2.5
(b) I L=6
2.04% 4 L=38
20 3 L=10
1.51 ) ¢ L=12
S &
3
- b%x%
0.5 { Y
A oa,
& o 4
0 " " " " " "
—10.0 —5.0 0 5.0 10.0
(U-U,) L

Fig. 2. (a) Finite size scaling of the superfluid density according to Eq. (32),
the crossing point determines the (2+ 1)d XY quantum critical point at
gc = (U/t)c = 4.25(2). (b) Data collapse of the above data with g¢, z =1
and v = 0.6723.

4.2. Autocorrelation time analysis

With the g. determined, we can now explore the perfor-
mance of various update schemes in the vicinity of the critical
point. We first analyze the autocorrelation time of the static
uniform magnetization M at the QCP,
X, 6|

V )
where 0,. is an unit vector with the phase between 0 to 2. The

M= (33)

summation is performed over the space—time volume, there-
fore the M is the static uniform magnetization of the O(2) order

parameter (see Fig. 1 for schematics). We measure the magne-
tization right at the QCP g = g, and obtain its autocorrelation
time 7 from fitting the exponential decay of the autocorrelation
function of Ay(r) as

p(r) = MOM(O) — (41(0))°
(M?) — (M)>

where ¢ is the time in units of one Monte Carlo sweep, al-

~eTE L (34)

Qs

though the definition of one sweep can be slightly differ-
ent among the update schemes, basically it corresponds to
one complete update of the space—time lattice. The results
are shown in Fig. 3. To obtain these smooth autocorrelation
functions, we use 10° Monte Carlo measurements in a single
Markov chain to calculate the Ay(¢). From Fig. 3(a), the ex-
ponential decays of the autocorrelation functions for L = 8 and
B = L at the QCP are clearly visible. Then one reads the auto-
correlation time from such results for different L. These results
show that LM, OR and HM schemes are all suffering from the
critical slowing down and the autocorrelation time increases
drastically with the system size L. On the other hand, WC
and FA have very small autocorrelation time and are for sure
the suitable methods to apply here. To quantify the difference

1.0 1. (a) — LM

0.8

0.6

<

0.4

0.2 -

0.

0 100 200 300 400 500

t

.| (b) —LM

1031 OR
— WC
— HM
—TFA

= 1073 °
(]
*
10" §
4%x10° 6x10° 10! 2x10'  3x10!
L

Fig. 3. (a) Autocorrelation function of static uniform magnetization Ay (r)
in Eq. (34) at the quantum rotor QCP for LM, OR, WC, HM and FA update
schemes with system size L = 8 and the Monte Carlo time 7 is averaged over
one million consecutive measurements from a single Markov chain. One
can see that for LM, OR and HM, the autocorrelation time is very long,
more than 500 Monte Carlo sweeps. While for WC and FA, the autocorrela-
tion time decreases a lot. (b) Log—log plot of the autocorrelation time Ty vs.
L for magnetization at the quantum rotor QCP for LM, OR, WC, HM and
FA update schemes. We fit the data with power-law as in Eq. (35) to obtain
the corresponding Monte Carlo dynamic exponent z. As for the FA scheme,
we choose C in Eq. (30) to be 0.1 for L =4,6, 0.01 for L = 8, 10, and 0.005
for L =12,16,20, to obtain the optimal value of 7.
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in the autocorrelation time, we take the log—log plot in
Fig. 3(b), and expect a power-law relation of the form

T~ 7, (35)

where z the dynamical exponent of the Monte Carlo update
scheme, and for the 2d Ising model at its critical point, it is
known that the z = 2.2 for the local update and z = 0.2 for the
Swendsen—Wang cluster update.!'8! From Fig. 3(b) one can
read z=2.05(16) for LM, z =2.05(8) for OR, and z = 3.60(5)
for HM, and as for the other two update schemes, shorter au-
tocorrelation times are observed, for example, z = 0.84(2) for
WC and z = 1.62(30) for FA. So these results reveal that at
the QCP of (2+ 1)d quantum rotor model, the critical slowing
down is mostly suppressed in WC and FA schemes.

1.04(a) — LM
OR
— WC
0.8 4 — HM
\ — FA
0.6
<
0.4 1
0.2
0 4
0 20 40 60 80 100 120 140 160 180
t
(b) LM
10?1
&
104

6x10° 10! 2x10'  3x10!

L

Fig. 4. (a) Autocorrelation function of energy Ag(z) at the quantum rotor
QCP for LM, OR, WC, HM and FA update schemes with system size L = 8
and the Monte Carlo time # is averaged over one million consecutive measure-
ments from a single Markov chain. One can see that for LM, OR and HM, the
autocorrelation time is very long, more than 200 Monte Carlo sweeps. While
for WC and FA, the autocorrelation time decreases a lot. (b) Log—log plot
of the autocorrelation time 7g for energy at the quantum rotor QCP for LM,
OR, WC, HM and FA update schemes. Again we fit the data with power-law
as in Eq. (35), to obtain the corresponding Monte Carlo dynamic exponent z.
As for the FA scheme, we choose C in Eq. (30) to be 0.1 for L = 6,8,10,12,
and 0.005 for L = 16,20, to obtain the optimal value of 7g.

The same analysis can be performed for the autocorre-
lation time of energy at the QCP, and the results are shown
in Fig. 4, one can read z = 1.40(11) for LM, z = 1.28(8) for
OR, and z = 2.43(12) for HM. As for the other two update
schemes, shorter autocorrelation times are observed, for exam-
ple, z=1.11(6) for WC, and most importantly, z = 0.76(8) for
FA with the smallest autocorrelation time of all sizes. It illus-
trates that the autocorrelation time for energy is different from
that for the magnetization — it is actually normal since dif-
ferent physical observables can have different autocorrelation

time — these results nevertheless reveal the consistent picture
that at the QCP of (24 1)d quantum rotor model, the critical
slowing down is mostly suppressed in WC and FA schemes.

4.3. CPU time analysis

Besides the autocorrelation time and its scaling with sys-
tem size at the QCP, we also test the effective calculation time
of each Monte Carlo scheme.

For example, for the magnetization at L =8, f = L at the
QCP, we compute the real CPU time and the obtained error-
bars among different schemes. Here, we use method of rebin-
ning to estimate the errorbar of data for each update scheme
and the time it takes to reach that. As shown in Fig. 5, with
fixed sample number of magnetization, we group the data of
every n consecutive measurements into one bin, then calculate
errorbar of sample mean among these bins. As the bin size n
becomes large, the correlation of sample mean among the bins
becomes small, and an plateau of the errorbar will be reached
once the data among different bins are indeed statistically in-
dependent. Among different schemes, it is clear that for WC
and FA schemes, not only the plateaus in errorbar are reach
at the earliest, around n ~ 100 of the bin size, but also the in-
trinsic errorbars obtained in this way are actually the smallest
among the five update schemes. These results imply that the
WC and FA schemes will be able to acquire the best quality
data with the smallest intrinsic errorbars of the magnetization
at the QCP with the shortest CPU time. All the other schemes,
LM, OR and HM, will take much longer time for the intrinsic
plateaus of their errorbars to be reached and hence will take

longer CPU time.
0.025
— LM
OR
0.020 { _ i
— FA
0.015 1
5
S
0.010 1
0.005 1
0 T T - .
0 200 400 600 800 1000

n

Fig. 5. The rebinning of the static uniform magnetization of different algo-
rithms as a function of bin size n. We choose the L = 8 and 8 = 8 system
at the QCP, and rebin the consecutive measurements to obtain the intrinsic
errorbars oy of different update schemes. It is clear for WC and FA, the
plateaus of errorbar are already reached when n < 200, and for the other
update schemes, it will take much longer CPU time for the intrinsic errorbar
plateaus to be reached, if ever reached.

The actual CPU hour spent on achieving the errorbar of
order 0.001 for the static uniform magnetization is shown in
Fig. 6. As explained above, it is indeed the case that the HM,
LM, OR schemes need longer physical time to achieve the re-
quired level of statistical error and among these three, the FA
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scheme is the slowest mainly due to the leapfrog processes
therein, although it shows smaller 7y and Tg compared with
LM and OR schemes. The FA and WC schemes, on the con-
trary, need very few CPU hours to achieve the required er-
ror and the WC is the best in this regard. But it should be
mentioned that although the FA scheme spends longer physi-
cal time than WC mainly due to its computational complexity.
It introduces more adjustable coefficients such as Ny, €, and
o(pr), and it offers the opportunity of efficient global update
even if the Hamiltonian of the problem at hand is more com-
plicated, such as the fermion-boson coupled systems afore-
mentioned, where usually long-range interactions are present
and one can no longer construct WC type of update.

250
200
< 150
) 100

50

4 6 8 10 12 14 16 18 20

Fig. 6. The CPU hour Ty spent for each Monte Carlo scheme to obtain the
error of 0.001 of static uniform magnetization M, as a function of system
sizes L. As expected, although the HM scheme has shorter autocorrela-
tion time compared with LM scheme, it actually spends more CPU time on
obtaining the shorter autocorrelation time mainly due to the leapfrog pro-
cesses therein. Whereas with FA scheme, both the autocorrelation time and
the CPU hour spent are much less compared with LM, OR, HM schemes
in reaching the same errorbar. The less CPU hours spent are for the WC
scheme, owing to both the small autocorrelation time and less number of
operations in the algorithm, thus it will be the best to calculate the bigger
size quantum rotor model.

5. Discussion

In this paper, we systematically test the performance of
several Monte Carlo update schemes for the (2 + 1)d O(2)
phase transition of quantum rotor model. Our results reveal
that comparing the local Metropolis, local Metropolis plus
over-relaxation, Wolff-cluster, hybrid Monte Carlo, hybrid
Monte Carlo with Fourier acceleration schemes, it is clear that,
at the quantum critical point, the WC and FA schemes acquire
the shortest autocorrelation time and cost the least amount of
CPU time in achieving the smallest level of relative error.

As we have repeatedly discussed throughout the paper, al-
though the (24 1)d quantum rotor models have been satisfac-
torily solved with various analytic (such as high temperature
expansion, 81 conformal bootstrap!®!) and Monte Carlo sim-
ulation schemes, it is now becoming more clear to the com-
munity that the extension of quantum rotor model to more
realistic and yet challenging models, such as quantum rotor
models — playing the role of ferromagnetic/antiferromagnetic

22,23 [46

critical bosons,?>%31 Z, topological order!*®! and U(1) gauge

field in QED3?*>] — Yukawa-coupled to various Fermi sur-
faces will provide the key information upon the important and
yet unsolved physical phenomena ranging from non-Fermi-
liquid, reconstruction of Fermi surface beyond the Luttinger
theorem[4’-3%1 and whether the monopole operator is relevant

25.51 Fyurthermore, the

or irrelevant at QED3 with matter field. !
bosonic fluctuation may even be applied in the momentum
space, e.g., the twisted bilayer graphene.®?! And progresses in
the problem of Fermi surface Yukawa-coupled to the quantum

rotor model [33-54

! have been made by some of us, in which, we
combine three of five update schemes discussed in the present
work, and show that they together give us a general pattern
in effectively sampling the O(2) bosons in the coupled sys-
tems. Novel physical phenomena including the non-Fermi-
liquid quantum critical metal, the deconfined critical point, !
and the pseudogap and superconducting phases which are gen-
erated from the quantum critical bosonic fluctuations, are dis-
covered from QMC simulations.

Moreover, although the fundamentalness of these ques-
tions go way beyond the simple (2 + 1)d Wilson-Fisher O(2)
fixed point, but the successful solution of these questions heav-
ily relies on the design of more efficient Monte Carlo update
schemes on the quantum rotor or O(2) degree of freedoms in
the (2 + 1)d configuration space of the aforementioned prob-
lem. In the presence of the fermion determinant, one can
perform the traditional determinantal quantum Monte Carlo
method with local update of the O(2) rotors for small and
medium system sizes, then with the available self-learning

[27-29] ap effective model with

and neural network schemes,
non-local interactions among the rotors can be obtained which
serves as the low-energy description of the fermion—boson
coupled systems. Then the methods tested in this paper, in
particular the hybrid Monte Carlo with Fourier acceleration
scheme, can be readily employed to perform global update
for such effective model, which will certainly reduce the auto-
correlation time compared with the simulation of the original
model and consequently reduce the actual CPU hours spent in
achieving the same level of numerical accuracy of the phys-
ical observables. Recent progress in the Holstein-type prob-
lems, where fermions and phonons (bosons) are strongly cou-
pled in 2d and 3d lattices with long-range interactions with FA
scheme, has been shown to be successful in revealing various
charge-density-wave and superconductivity transitions. [++43]
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Appendix A: Link-current representation

From partition function in Eq. (12), one can also integrate
0 to arrive at the following link-current model. Its partition
function is written as

Z=Yepl- 5% ¥ Kinro ()l

o T p=xy,T

(AD)

where r represents the original site in the (2 + 1)d space—
time configuration, p represents the +x,=+y, £7 bond direc-
tions originating from site r. J,. ,, lies on the bond (r,r + ).
For spatial bonds K|, ,, = Ky = tA7 and for temporal bonds
Kip oy = Ke = ﬁ. Due to the translation symmetry, J, , =
—Jr4u,—p» then the current on bonds must obey the continuity

equation
Y Iy =0, (A2)
n
One can update model Eq. (A1) in a loop update regime.??!]
By choosing one loop with probability like worm algorithm in

term of the weight A,. ,,, written as

A, =min(l, exp(—AE, ,)], (A3)

where AE, = E|. — E, and E|. and E, represent the classical
energy after and before the update on bond (r,r + u) de-
scribed by Eq. (A1). Thus the probability can be derived by
normalizing the weight p,. ,, = A,W/NT, where N,. = ZuAmr
Usually, we add the same integer to all bonds on the loop to
satisfy the continuity equation Eq. (A2).

Moreover, transferring the lattice to its dual one can avoid
the constraint, as the Monte Carlo update with constraint is
usually difficult to implement. One can easily update one site
instead of a loop, by writing

-]r,x = Mpix+ Mr+x+y + My +Mr+x+y+z>

Jr,y = Mr+y + Mr+y+x + M'r'+y+z + Mr+y+x+za
Jr,r = *2<MT+Z +Mpyzty +1‘/I'r'+z+y +MT‘+Z+JC+)')a

Jr—x = M, +Mr+y +Mr+z +Mr+y+z;

Jr.,fy = My + My i« +Mr+z +1‘4'r‘+x+z»
Jr,—r = _2(Mr +Mr+x+Mr+y+Mr+x+y>~ (A4)

As denoted in Fig. A1, that J;. ; lives on the original bond
of square lattice on the site r with direction y and M,. repre-
sents the site of dual lattice. The continuity equation is natu-
rally satisfied. Now the partition function can be written as

1 2
Z = Z exp *EKx(MT +Mpipy+Mry: +Mr+/.1+z)
Oy

+ZGXP |:72KT(MT‘ + My + My +M'r+x+y)2 - (AS)
U,

Here, u represents x and y directions. The summation in the
first line of Eq. (AS) runs over all the square whose normal
vector is in the directions of x and y. Similarly, the summation
in the second line of Eq. (A5) runs over all the square whose
normal vector is in the direction of z. Local update can be eas-
ily used in this situation of one site by simply calculating the
energy difference of the square it locates.

'Jwr+y+z

M'r'+w+z.. """"""""""""""" ;"" o

Fig. A1. Map from the original lattice to dual lattice according to Eq. (A4).

Appendix B: WC update scheme

Here we show the detailed update process by means of
part of sites in the whole system. Four subgraphs in Fig. BI
show the vectors before update, choosing the random site and
mirror denoted by #, construct the cluster with probability, re-
orient the vectors, respectively.

@ | ORI
_ A0 \ # A )\
P ol

(c) (d)

Fig. B1. Schematic map of WC update operation. (a) The light blue sites
and arrows represent the lattice and the orientations, with the angle of 6.
(b) The red short line for each site represents the common mirror direction,
whose normal vector is denoted by the red arrow. The deep blue arrow in the
middle is the vector on the random-choosing site, served as the start point
of the cluster. (c) The deep blue arrows linked by the dash lines denote the
vector in the cluster, constructed by probability. (d) The deep blue arrows
here are the reoriented vectors, compared with the light blue arrows before
update.
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