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Spiking neural networks (SNNs) are widely used in many fields because they work closer to biological neurons.
However, due to its computational complexity, many SNNs implementations are limited to computer programs. First, this
paper proposes a multi-synaptic circuit (MSC) based on memristor, which realizes the multi-synapse connection between
neurons and the multi-delay transmission of pulse signals. The synapse circuit participates in the calculation of the network
while transmitting the pulse signal, and completes the complex calculations on the software with hardware. Secondly, a new
spiking neuron circuit based on the leaky integrate-and-fire (LIF) model is designed in this paper. The amplitude and width
of the pulse emitted by the spiking neuron circuit can be adjusted as required. The combination of spiking neuron circuit
and MSC forms the multi-synaptic spiking neuron (MSSN). The MSSN was simulated in PSPICE and the expected result
was obtained, which verified the feasibility of the circuit. Finally, a small SNN was designed based on the mathematical
model of MSSN. After the SNN is trained and optimized, it obtains a good accuracy in the classification of the IRIS-dataset,
which verifies the practicability of the design in the network.

Keywords: memristor, multi-synaptic circuit, spiking neuron, spiking neural network (SNN)
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1. Introduction

In recent years, with the rapid development of artificial
intelligence, artificial neural networks (ANNs) have been ap-
plied in various fields.[1–4] Spiking neural networks (SNNs)
are known as the third generation of the neural network.[5]

Neurons transmit information by sending pulse signals to each
other, which simulates the information processing model of
neurons in the human brain. Compared with the previous two
generations, it is more similar to the biological neural network.
SNNs have attracted the attention of scholars due to their rich
neurodynamic characteristics in the field of space and time,
diverse coding mechanisms, and event-driven advantages.[6]

With the continuous development of SNNs, its theory has
been very advanced. Many scholars have focused their re-
search on the hardware implementation of SNNs. SNNs em-
ulate the computational paradigm of biological neurons. As
the depth of the network increases, the connections between
neurons become more complex and the network parameters
become larger and larger, which makes the task of imple-
menting artificial neural networks with hardware more diffi-
cult. Therefore, building SNNs with hardware to simulate
human brain systems requires the use of devices that can be
large-scale and high-density integration, low power consump-
tion, and good stability. In 1971, Chua (University of Cali-

fornia at Berkeley) pointed out that nature should also exist
as one circuit element, it represents the relationship between
the magnetic flux and charge.[7] In 2008, HP personnel first
discovered nano memristor devices.[8] Memristors are passive
devices with nonlinear and non-volatile characteristics. Its re-
sistance is related to the amount of charge passing through it.
Due to its nanometer size, it can achieve ultra-high integra-
tion and is easy to be controlled. It is perfectly compatible
with CMOS technology in the production process.[9] Due to
the good characteristics of the memristor, it has been widely
used in neural computing, especially as a synapse of neural
networks with outstanding performance.[10–14] Because of the
similarity between memristors and biological synapses, mem-
ristors are widely used in SNNs. For example, Gerard et al.[15]

proposed a spiking neuroevolutionary system, which realized
memristors as plastic connections. Liu et al.[16] constructed
a spiking neural network based on memristor for image edge
extraction. Hu et al.[17] proposed a memristor-based dynamic
(MD) synapse design with memristor models. Zayer et al.[18]

present the implementation of low power and ultrafast spike-
timing-dependent plasticity (STDP) of the spiking neural net-
work (SNN) in a crossbar structure based on the ferroelectric
tunnel memristor (FTM). Zohreh et al.[19] used LIF neurons
and memristive synapses to construct a fully connected SNN
with 2× 2 and 4× 2 structures for pattern classification. In
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these works, memristors are used as synapses of neural net-
works, demonstrating the value of memristors in neural net-
works. But these synaptic designs hardly involve discussions
about multi-synaptic connections and synaptic signal trans-
mission delay. Therefore, discussing the realization of multi-
ple synapses in hardware circuits has great value and potential.

The design of spiking neurons is also an important part of
SNNs. To simulate the working mode of biological neurons,
various types of spiking neuron models have been proposed.
The first proposed is the Hodgkin–Huxley (HH) model,[20]

which is the closest to biological neurons, but the calculation is
too complicated and difficult to implement with circuits. Later
models such as the Izhikevich model,[21] Leaky integrate-and-
fire (LIF) model.[22] were proposed. The LIF model is close
to real biological neurons, and at the same time, there is no
particularly complicated calculation process, and it is widely
used in SNNs. On this basis, with the continuous efforts of
researchers, various neuron circuits have been proposed one
after another.[23,24] For example, Afifi et al.[25] proposed a
new CMOS-nano circuit for efficient implementation of spike
neurons. Yunus et al.[26] used their proposed memristor to
construct a new neuron circuit that can generate spiking and
burst to fire behavior. Kim et al.[27] proposed a spike-triggered
adaptive neuron circuit with input current modulation. Zhao
et al.[28] designed a new spiking neuron circuit based on the
conventional LIF neuron, which uses the nonlinear variation
of memristance to generate spikes. Woo et al.[29] proposed
an integrate-and-fire (IF) neuron circuit using a single-gated
silicon nanowire feedback field-effect transistor that utilizes a
positive feedback loop. These works provide many options
for the circuit realization of the spiking neuron. However, the
design of the spiking neuron circuit with high controllability,
good network adaptability, and large-scale integration capabil-
ity is still the focus of research.

In this paper, firstly, the MSC based on the cross-array
of spin memristors is proposed, which simulates the multi-
synaptic connections between biological neurons. Different
strengths of the synaptic connection between neurons can be
simulated by setting different weights of memristors in this
circuit. By setting different time delays to the delay de-
vice, the signal transmission duration of different biological
synapses can be simulated. With proper setup, the whole cir-
cuit can simulate the multi-synaptic connection between bi-
ological neurons and the multi-delay process of information
transmission. The synaptic function is realized by the memris-
tor cross-array, which makes the network operation faster, re-
duces energy consumption, and improves the integration of the
network. The MSC is simulated by PSPICE, and the expected
simulation results are obtained. Secondly, a spiking neuron
circuit based on the LIF model is designed. The neuron circuit
can complete the functions of input pulse integration, mem-

brane voltage leakage, and pulse emission. And this circuit
can be combined with MSC to form MSSN, which can be used
to build SNNs. Compared with previous work, the neuron cir-
cuit has the advantages of easier implementation, low device
consumption, adjustable pulse threshold, and adjustable pulse
width. The PSPICE simulation verifies the feasibility and ro-
bustness of the neuron circuit, which can provide more options
for the hardware implementation of SNNs. Finally, based on
the mathematical model of the MSSN circuit, a small SNN
was designed and simulated in Python. The network was ap-
plied to classify IRIS-dataset and achieved good classification
results.

The following content of this paper is arranged as follows:
In Section 2, the memristor used is briefly introduced, and then
the MSC based on the memristor cross-array is proposed. In
Section 3, a spiking neuron circuit based on the LIF model is
introduced. In Section 4, the application of the MSSN circuit
model in SNNs is introduced. Finally, Section 5 summarizes
the work of this paper and prospects the future work.

2. MSC based on memristors
Simulating biological synapses on hardware has high re-

quirements for the devices used. The size, power consump-
tion, and compatibility of the devices all determine the per-
formance of the synapses. Memristors are nano-scale de-
vices with the characteristics of non-volatility, high scalabil-
ity, low power consumption, etc., and have a wide range of
applications.[30–35] It is a good choice to implement MSC with
memristors. The team of Chen from Duke University pro-
posed a spin memristor based on magnetic domain wall move-
ment technology.[36] The spin memristor has good linear char-
acteristics and can meet the requirements of multi-bit data stor-
age. The use of spin memristors in synaptic structures can not
only store multi-level synaptic weights but also participate in
network calculations. Therefore, the spin memristor is used in
the MSC in this paper.

2.1. The MSC

The human brain is a complex, high-density, and ex-
tremely low-power information processing system, which
contains nearly 1010 neurons and 1014 synapses.[37] A sin-
gle neuron can be connected to nearly 104 other neurons
through synapses.[38] Inspired by biological research, the net-
work structure of multi-synaptic connections was proposed
and obtained good results.[39] This multi-synaptic connection
strengthens the stability of neural information transmission
and storage.[40] Based on this multi-synaptic connection, an
equivalent structure based on memristor is proposed as shown
in Fig. 1. In this structure, two neurons are connected by mul-
tiple synapses with different weights and time delays, where
W1, W2, W3, etc. represent the weights of the synapses, which
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are the resistance values of the corresponding memristors. De-
lays D1, D2, D2, etc. control the time delay of the synapse. The
synaptic circuit can be used to simulate the connection char-
acteristics between biological neurons.

D
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D
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Dn

W

W

W

W

Wn

Pos neuronPre neuron

Fig. 1. Model of multiple synapses between two neurons. Each synapse is
composed of a delayer and a memristor in series. Among them, the resis-
tance value of the memristor represents the synapse weight, and the delayer
represents different signal delays.
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Fig. 2. Memristor cross array realizes multi-delay and multi-synaptic con-
nection circuits. Each row of delayers is connected in parallel, and the de-
layers are connected in series with adjacent memristors. Two memristors
connected in parallel represent a weight. After a voltage pulse input, the
output voltage Vout of the synapse can be obtained through multi-level cal-
culations.

Arranging the synapse structure on the memristor cross
array, the synapse circuit shown in Fig. 2 can be obtained. In
Fig. 2, the delays D1, D2, D3, . . ., Dn are connected to the
presynaptic neuron, and each delay is connected in series with

the corresponding memristor. The entire memristor cross ar-
ray realizes multi-synapse and multi-delay synaptic functions.
In this circuit, the presynaptic neuron only needs to send one
pulse signal to the connected delayer at a time. After the de-
layer receives the pulse sent by the pre-neuron, it delays the
pulse for a preset time, and then transmits the pulse to the
memristor connected in series. In this way, it can simulate
the multi-delay and multi-synapse connection in SNNs. Due
to the existence of inhibitory synapses, their role is to reduce
the membrane potential of neurons, so that neurons emit pulses
later. In SNNs, negative weights can be used to express this in-
hibitory effect. Since the resistance values of the memristors
are all positive, two memristors in parallel are used to express
the positive and negative values of the weights. As you can see
in Fig. 2, two rows of memristors G+ and G− are connected
in parallel to express weights. The combination of the resis-
tance values W+ and W− of the two columns of memristors
represents one weight. Under the action of the pulse signal,
two currents I+ and I− will be generated respectively. At the
end of the cross array, these two currents will be converted
into voltages V+ and V−, and then through a subtractor to get
the final voltage Vout, where Vout = V+−V−. The voltage is
then output to the postsynaptic neuron to complete the signal
transmission task.

0 1 2 3 4 5 6
-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

2.5  Vout

 Vin

V
o
lt
a
g
e
 (

V
)

Time (ms)

τ1 τ2 τ3

τ4

τ0

Fig. 3. PSPICE simulation results of the MSC. The red line represents the
input pulse, and the blue line represents the output result.

This circuit was simulated in PSPICE, and the simulation
result is shown in Fig. 3. In this simulation, the MSC consists
of a 2× 4 memristor cross-array is simulated. The resistance
values of the column G+ is respectively set to 10 kΩ, 12 kΩ,
8 kΩ, and 3 kΩ, and the resistance values of the column G− is
all set to 5 kΩ. Meanwhile, each delay device is set to delay
1ms. In the simulation process, a voltage Vin is input to the cir-
cuit at τ0 = 0.2 ms, which is a pulse with an amplitude of 2 V.
This pulse acts on the memristor at τ1 = 1.2 ms,τ2 = 2.2 ms,
τ3 = 3.2 ms, and τ4 = 4.2 ms after passing through delayers
D1 ∼ Dn, and generates currents I+ and I+ respectively. Then
these currents are converted into voltages and subtracted to ob-
tain the final output voltage Vout. As can be seen in the figure,
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the red line represents the input pulse, and the blue line repre-
sents the output result. Here are 4 output voltages with differ-
ent time delays, which are 1.9 V, 2.35 V, 1.55 V, and −1.3 V
respectively, verifying the feasibility of the circuit.

3. Spiking neuron circuit

In the research of simulating biological neurons, various
neuron models have been proposed, among which the LIF neu-
ron has been widely used because of its advantages of simple
computation and strong mimicry. Based on the LIF model,
a new spiking neuron circuit is proposed in this paper. This
circuit can integrate the input pulse and continuously leak
the voltage when there is no pulse signal input, which simu-
lates the dynamic process of biological neuron signal process-
ing. When the membrane potential of the neuron reaches the
threshold, it will send a pulse to the posterior neuron, and at
the same time zero its membrane potential. During the period
when a spiking neuron emits a pulse, the neuron does not re-
spond to the input pulse until the pulse is emitted. In this spik-
ing neuron circuit, one 555-timer, 2-voltage control switches,
3-capacitors, and 4 resistors are used. The neuron circuit was
simulated by PSPICE, and the expected result was obtained,
which verified the feasibility of the circuit.

3.1. Pulse generating module (PGM)

The PGM is an important part of the spiking neuron cir-
cuit. In this design, the monostable mode of the 555-timer is
used to control the release of pulses. As shown in the blue dot-
ted line on the right side of Fig. 4, the 555-timer, R2, R3, R4,
S2, C2, and C3 form the PGM. In PGM, connect pin 7 and pin 6
of the 555-timer to VCC through the upper resistor R3, and then
connect to the ground through the capacitor C2. The resistor
R3 and the capacitor C2 are connected in series to control the
width of the emitted pulse, and VCC determines the amplitude
of the pulse. Capacitor C3 prevents the 555-timer from being
disturbed by noise signals, and R4 is a pull-up resistor.

When the amplitude of the input voltage V2 of pin 2 of
the 555-timer is equal to VCC, the neuron circuit has no output.
Only when the voltage amplitude of pin 2 is 0 V, a will pulse
be output. The duration of the pulse signal is determined by
R3 and C2. The duration can be expressed by the following
formula:

th = RC ln
VCC

VCC− (2/3)VCC
= 1.1RC. (1)

Here, R and C are the values of capacitor C2 and resistor R3,
respectively, and VCC is the voltage applied to the 555-timer.
It can be seen from this formula that the pulse width emitted
by the circuit can be adjusted according to requirements. The
simulation result of the PGM in PSPICE is shown in Fig. 4.
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Fig. 4. Simulation results of PGM in PSPICE.

3.2. Spiking neuron circuit

The previous chapter briefly introduced the PGM of spik-
ing neurons. Using this module in spiking neurons not only
makes the pulse width more controllable but also makes the
pulse amplitude more stable. The overall circuit diagram of
the spiking neuron is shown in Fig. 5.

The red dashed line on the left side of Fig. 5 is the in-
tegration and leakage module (ILM) of the spiking neuron.
The ILM is composed of a capacitor C1, a resistor R1, and
a voltage-controlled switch S1. In this module, the resistor
R1 is connected in parallel with the capacitor C1, the con-
trolled terminal of the switch S1 is connected to both ends of
C1, and the controlling terminal of the switch S1 is connected
and controlled by the output terminal of the 555-timer. The
conduction state of the switch S1 determines whether the ca-
pacitor C1 responds to the input pulse. When the switch S1

is non-conducting, the capacitor C1 integrates the input pulse
and completes the voltage leakage process when there is no
input pulse. When the switch S1 is conducting, the capaci-
tor C1 quickly discharges, and its voltage is set to zero. The
capacitor C1 can continue to charge until the switch S1 is non-
conducting.

The purple dashed line in the middle of Fig. 5 is the pulse
control module (PCM). The control terminal of the switch
S2 in the module is connected to both ends of the capacitor
C1, and the voltage of C1 controls the conduction state of the
switch S2. The conduction state of the switch S2 determines
the 2-pin input of the 555-timer. When the switch S2 is non-
conducting, pin 2 is equivalent to directly connected to VCC

through the resistor R2, and the input voltage V2 of pin 2 is
VCC. When S2 is conducting, pin 2 is equivalent to directly
connected to GND. At this time, the input voltage V2 of pin
2 is 0 V, and R2 protects the power supply VCC. The PGM is
followed by the pulse control module and is controlled by it.

When a pulse arrives, the pulse will charge the capacitor
C1. If the voltage VC of the capacitor C1 does not reach the
conduction value of the switch S1 (the threshold value of the
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spiking neuron), the spiking neuron does not emit a pulse. And
when there is no input pulse, the capacitor C1 slowly leaks the
voltage through the parallel resistor R1 and waits for the arrival
of other pulses. If the voltage VC of the capacitor C1 gradually
increases to be equal to the threshold of the switch S2, the con-
trolled end of the switch S2 will be turned on, and the voltage
of pin 2 will be pulled down to 0 V. When it happens, the 555-
timer starts to work and emits out a fixed-width pulse. And
turn on the switch S2 through the feedback loop, make the ca-
pacitor discharge rapidly. During the pulse emitting process,
C1 will not be able to charge until the pulse is emitted. This
circuit completes the integration, leakage, and firing functions
of spiking neurons. The dynamic process of the neuron circuit
can be expressed by the following formula:

When there is a pulse inputVC (t) =
1
c

∫
ic dt +VC (0) ,

Spike = 0,
VC (t)<Vth; (2)

{
VC (t)← 0,
Spike = 1,

VC (t) =Vth. (3)

When there is no pulse input

{
VC (t) =VC (0) · e−t/τ ,

Spike = 0,
VC (t)<Vth. (4)

Here, VC (t) represents the membrane voltage of the spik-
ing neuron at time t, and ic represents the current flowing
through the capacitor when the capacitor is charged. VC (0)
represents the voltage of the neuron at the last moment. Spike
indicates whether a pulsed neuron emits a pulse. When spike
is equal to 1, a pulse is emitted, and when spike is equal to 0,
no pulse is emitted. τ is the time constant, and its value is de-
termined by the capacitor C2 and the resistor R3. Vth represents
the threshold voltage of the spiking neuron.
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Fig. 5. LIF neuron circuit. The red dashed line on the left is the ILM, the purple dashed line in the middle is the PCM, and the blue dashed line on the
right is the PGM.
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Fig. 6. Neuron simulation results in PSPICE. The membrane voltage VC of
the spiking neuron gradually increases under the action of the input pulse.
When the threshold is reached, a pulse is emitted and the membrane voltage
is set to zero.

The spiking neuron circuit was simulated in PSPICE, and
the simulation result is shown in Figs. 6 and 7. In these figures,
Vpulse represents the pulse input from the pre-neuron, VC rep-
resents the voltage of the capacitor C1 (that is the membrane
voltage), and Vout represents the pulse firing of the neuron. In

the simulation, the threshold of the spiking neuron is set to
1.2 V. In Fig. 6, the neuron receives 4 pulses from the pre-
neuron, and the voltage VC of C1 gradually raises with time. It
can be seen that the voltage VC leaks over time during the inter-
val between the two pulses. Due to the large amplitude of the
4 input pulses, VC is charged to the threshold at the end of the
4th pulse, and the spiking neuron emits a pulse at this time. In
Fig. 7, since the amplitude of these 4 pulse inputs is small, the
VC cannot be charged to the threshold value, so no pulse is sent
out. The simulation verifies the feasibility of the circuit. Com-
pared with the existing spiking neuron circuits, this neuron is
more suitable for building SNNs. The threshold value of the
neuron circuit, the width, and the amplitude of the firing pulse
can be adjusted by the circuit parameters. The initial mem-
brane voltage of the neuron circuit is set to zero instead of a
negative voltage, which saves energy consumption and is more
suitable for SNN circuit implementation. The circuit also has
the advantages of being easier to implement, and low in device
and power consumption. At the same time, the neuron circuit
can also be combined with the MSC we designed to form the
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MSSN circuit. The circuit verified the feasibility and robust-
ness of the circuit through PSPICE simulation and provided
more options for the hardware implementation of SNNs.
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Fig. 7. Neuron simulation results in PSPICE. The membrane voltage VC of
the spiking neuron gradually increases under the action of the input pulse.
However, the capacitor C1 has not reached the threshold, there is no pulse
emission and the voltage VC of the capacitor C1 gradually leaks.

3.3. The MSSN circuit

In the second chapter, the MSC with multiple delay func-
tions is introduced, which can convert a single input pulse into
multiple delayed pulses and output them. Combine MSC with
the spiking neuron circuit to form the MSSN circuit. In the-
ory, a certain number of MSSN circuits can be used to build
an SNN with certain functions. The MSSN circuit can be rep-
resented in Fig. 8. In Fig. 8, the previously defined package
sign is used to represent the corresponding circuit. It can be
seen that the MSC and the spike neuron circuit are connected
in series to form the MSSN circuit, that is, the output of the
MSC is used as the input of the spike neuron circuit.

D

D

D

Vin Spiking neuron circuit
Vout

Multi synaptic circuit 

Fig. 8. MSSN circuit. The circuit consists of a cascade of multi-synaptic
circuits and spike neuron circuits.

4. Application in SNN
In this paper, a small SNN is designed to verify the feasi-

bility of the MSSN. Based on the mathematical model of the
circuit, a two-layer SNN is built in python, and the SNN is
used to classify the IRIS-dataset. Theoretically, SNN based
on MSSN circuit design can perform classification tasks on
different data sets. By setting the appropriate number of neu-
rons and parameters, with excellent algorithms, it is possible to
classify other data types similar to IRIS-dataset, such as Wis-
consin Breast Cancer Dataset and Statlog (Landsat Satellite)
Dataset. For other larger data sets or data types that are not

similar to IRIS-dataset, only after proper preprocessing of the
data set and the use of better algorithms, the SNN designed
based on MSSN can complete the classification task of the
processed data. After training and adjusting the parameters of
the network, a good result was finally obtained in the classi-
fication task of IRIS-dataset, which verified the feasibility of
our design.

4.1. Introduction to IRIS-dataset

IRIS-dataset is a commonly used classification experi-
ment data set. Iris is also called the iris flower dataset, which
is a type of data set for multivariate analysis. The data set con-
tains a total of 150 data samples, which are divided into 3 cat-
egories, namely, Setosa, Versicolour, and Virginica. There are
50 data in each category, and each data contains 4 attributes.
Through the four attributes of calyx length, calyx width, petal
length, and petal width, it is possible to predict which of the
three types of Iris flowers belong. The 150 samples are di-
vided into two equal parts, one is used as the training set of
SNN, and the other is used as the test set of the network.

4.2. Design of the SNN

Based on the MSSN circuit, the circuit can be mapped
to the corresponding theoretical model. In a spiking neural
network, each spiking neuron is connected to Γj pre-neurons
and each connection contains m delay synapses, then neuron
j will receive a set of pulses at the time ti, where i ∈ Γj. The
relationship between the state variable x j (t) of the membrane
voltage at the peak of neuron j and the input received from all
pre-neurons is as follows:[41]

x j (t) = ∑
i∈Γ j

m

∑
k=1

wk
i jy

k
i (t), (5)

where x j (t) represents the membrane voltage of the neuron,
which can correspond to the voltage of the capacitor C1 in the
spiking neuron circuit. Where wk

i j represents the weight of the
synapse, which corresponds to the resistance of the memris-
tor in the circuit. And yk

i (t) represents the sequence of each
presynaptic pulse over time, and its expression is

yk
i (t) = ε

(
t− ti−dk

)
. (6)

Here dk is the synaptic delay, which simulates the role of the
delay apparatus in the synaptic circuit. ε (t) can simulate the
leakage of the membrane voltage of the spiking neuron with
time in the absence of the pulse input, its expression is

ε (t) =
t
τ

e1−t/τ , (7)

where τ is the time constant, which determines the leakage
rate of the neuron membrane voltage, and its value can be de-
termined by R3 and C2 in the neuron circuit.

According to this mapping relationship, an SNN with a
structure of 4× 8× 1 is built. It includes 4 input neurons, 8
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hidden neurons, and 1 output neuron. Neurons are connected
by 5 synapses, and each synapse is set with a fixed time delay.
The SNN structure contains a total of 40 groups of 5×2 mem-
ristor cross arrays, sharing 400 memristors. The structure of
the SNN is shown in Fig. 9. It can be seen from the figure that

4 input neurons are connected to 8 hidden neurons, and the
hidden neurons are connected to output neurons. The contents
of the two dashed boxes on the upper right of Fig. 9 indicate
that the model of the LIF neuron and synapse in the network
structure is consistent with the designed circuits.

Input 1

Neuron1

Neuron2

Neuron3

Neuron4

Neuron5

Neuron6

Neuron7

Neuron8

Output 

D

D

D

VoutVin

Spiking neuron 
VoutVin

Input 2

Input 3

Input 4

Fig. 9. SNN structure diagram. The structure of SNN is 4× 8× 1, including 4 input neurons, 8 hidden neurons, and 1 output neuron. Neurons are
connected through multiple synapses. The neuron model and synapse model of SNN are consistent with the designed circuits.

4.3. Process and result analysis of SNN

To enable SNN to complete complex recognition tasks,
the SpikeProp[41] algorithm is used to train the SNN. During
training, the value of each attribute of the sample is used as the
pulse input time. For example, when the value of a certain at-
tribute is 3.0 cm, a pulse is input to the corresponding neuron
at 3.0 ms. After the network training is completed, the identi-
fication accuracy of the network is verified by using the data of
the test set. In this SNN, the final result of classification is de-
termined by the time interval of the pulse emitted by the spik-
ing neuron in the output layer. After multiple debugging, the
time interval of Setosa class pulse was set at 9.7 ms∼10.8 ms,
Versicolor class pulse was set at 10.7 ms∼11.8 ms, and Vir-
ginica class pulse was set at 11.7 ms∼12.8 ms. The time here
refers to the step size of software iteration calculation, not the
real time.

To demonstrate the implementation process of the net-
work, a sample belonging to the Virginica class in the test set is
taken out and analyzed separately. The four attributes of this
sample are calyx length, calyx width, petal length, and petal
width, respectively, 6.6 cm, 3.0 cm, 4.4 cm, and 1.4 cm. The

value of the sample data is used as the pulse input time. After
the iteration of the network, the pulse output time of the 8 neu-
rons in the hidden layer is 7.69 ms, 7.99 ms, 7.89 ms, 7.99 ms,
8.09 ms, 8.09 ms, 8.09 ms, 7.89 ms. Finally, the neuron in the
output layer has a pulse time of 12.39 ms. The time 12.39 ms
was within the classification interval of 11.7 ms∼12.8 ms, and
the sample was successfully classified as Virginica. The clas-
sification process is shown in Fig. 10. You can see the input
time of the pulse and the time each neuron emits the pulse in
the figure. The red box at the bottom right of the figure shows
that the input pulse at 1.4 ms produces multiple delay pulses
after passing MSC. In the figure, only one multi-synaptic de-
lay transmission is drawn, and the other synapses are also an-
alyzed in the same way.

The final classification results on the complete test set are
shown in Fig. 11. As can be seen from the figure, spiking time
is divided into three regions. The orange area at the bottom
represents the first class (Setosa), the pink area in the mid-
dle represents the second class (Versicolor), and the light blue
area at the top represents the third class (Virginica). In the fig-
ure, the shape of the red dots represents the sample of Setosa,
the shape of the purple triangle represents the sample of Versi-
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color, and the shape of the blue diamond represents the sample
of Virginica. It can be seen from the figure that almost all the
samples are within the corresponding time interval, and the

identification accuracy reaches 97.33%. The results show that
the network can accurately classify and identify the samples in
the test set, which verifies the feasibility of the design.

6.6 ms0

3.0 ms0

4.4 ms0

Input 1

Input 2

Input 3

Input 4

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Neuron 6

Neuron 7

Neuron 8

Output

7.69 ms0

7.99 ms0

7.89 ms0

7.99 ms0

7.89 ms0

8.09 ms0

8.09 ms0

7.89 ms0

12.39 ms0

1.40 2.4 6.4

1.4 ms0

t (ms)

Fig. 10. The process of SNN processing a single sample. The 4 pulses on the left in the figure are the input of the input neuron, which are input at
the time of 5.5 ms, 3.5 ms, 1.3 ms, and 0.2 ms respectively. The 8 neurons in the hidden layer reach the neuron threshold and emit pulses at 6.99 ms,
7.59 ms, 7.09 ms, 7.19 ms, 7.49 ms, 7.09 ms, 6.99 ms, and 7.29 ms respectively. The last output neuron emits a pulse at time 12.39 ms. The red box
shows the delayed pulse of the synapse.
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Fig. 11. The recognition result of SNN on the test set. The spiking time is
divided into three areas, which represent the classification range of differ-
ent flowers. Circles, triangles, and diamonds represent the samples of three
kinds of flowers.

5. Conclusion

In this paper, a memristor-based MSC is designed. This
circuit simulates the multi-synapses and multi-delay charac-
teristics of biological neurons. Because memristors are com-
patible with CMOS technology and have the characteristics of
nanometer size, applying the synaptic circuit to the hardware

constituting SNNs can save design cost and space. Secondly,

a spiking neuron circuit based on the LIF neuron model is pro-

posed. The neuron circuit uses fewer devices and is easy to

implement in hardware. The threshold value, pulse width, and

amplitude of the neuron circuit can be adjusted by the param-

eters of the circuit, and the firing pulse is stable. Setting the

initial voltage of the neuron circuit to zero not only reduces en-

ergy consumption but is more suitable for building SNN cir-

cuits. The simulation of PSPICE verifies the controllability

and robustness of the neuron circuit. The neuron circuit and

MSC can be combined to form MSSN, which can be used to

build SNNs. At the end of the paper, the application of MSSN

in SNN was simulated based on the theoretical model of the

MSSN circuit, and good results were obtained. In the future,

we will continue to study the implementation of deep neural

networks on hardware to achieve more complex neural net-

works with less hardware consumption. Provide more choices

for the realization of neural networks on hardware.
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