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The anti-trigonometric function is used to strictly solve the uniaxial anisotropic Stoner–Wohlfarth (SW) model, which
can obtain the relation of the angle α(θ) between the magnetization (the anisotropy field) and the applied magnetic field.
Using this analytic solution, the hysteresis loops of uniaxial anisotropic SW particles magnetized in typical directions could
be numerically calculated. Then, the hysteresis loops are obtained in randomly distributed SW particle ensembles while
ignoring the dipole interaction among them with the analytic solution. Finally, the correctness of the analytic solution
is verified by the exact solutions of remanence, switching field, and coercivity from the SW model. The analytic solu-
tion provides an important reference for understanding the magnetizing and magnetization reversal processes of magnetic
materials.
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1. Introduction
There are three major magnetizing and magnetiza-

tion reversal mechanisms in magnetic materials: coherent
rotation,[1] domain wall motion,[2] and nucleation.[3] The
Stoner–Wohlfarth (SW) model was presented and published
by Stoner and Wohlfarth in the 1940s, which successfully de-
scribed the coherent rotation of uniaxial anisotropic single-
domain particles and predicted the switching field of non-
interacting single-domain particles ensembles.[1,4] At present,
the SW model is not only widely used in magnetic record-
ing media[5–8] and hard magnets[9,10] but also a basic model
for describing the dynamic magnetic properties of soft mag-
netic materials under microwaves.[11–15] In addition, it pro-
vides an effective analysis model for magnetoelectric transport
such as anisotropic magnetoresistance and anomalous Hall
effect,[16–18] and spintronics research such as spin Hall magne-
toresistance and spin Hall effect.[19,20] Determining the stable
direction of magnetization under an applied magnetic field is
the key to obtain the magnetizing curves and hysteresis loops,
as well as understand the basic magnetic physical quantities.

Figure 1 is a schematic illustration to describe the co-
herent rotation of the spherical Stoner–Wohlfarth (SW) parti-
cle with uniaxial anisotropy field 𝐻K under the applied mag-
netic field 𝐻 . In the classic paper of SW, although the ex-
act solution of the switching field magnetized in any direc-
tion was given, only the analytic solutions of the stable di-
rection of the magnetization at θ = 0◦, 45◦, and 90◦ were
obtained.[1,21] Surrounding the switching field, Slonczewski

proposed a geometric solution of the uniaxial case in 1956,
which became known as the asteroid method.[22] Thiaville ex-
tended this method to two-dimensional and three-dimensional
systems under arbitrary anisotropy energy, and applied it to
nano-magnetic particles.[23] On this basis, Pfeiffer discussed
the influence of thermal fluctuations on magnetization jump-
ing over the energy barriers.[24] Szabo discussed the change
of the switching field in a rotational magnetic field with linear
excitation.[25] Henry gave the distortion of the SW astroid in a
spin-polarized current.[26] Meanwhile, the remanence and co-
ercivity have also been studied in the SW model.[27] However,
there is no simple form of stable solution for the magnetiza-
tion magnetized in arbitrary directions. Although it can be
transformed into a 4th-order equation,[28,29] due to the non-
uniqueness of the solution, it is difficult to obtain the magne-
tizing curves and hysteresis loops.

(a) (b)
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HK

MS MS
θ θ

H H

R R
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Fig. 1. Schematic illustration of SW particle. (a) The applied magnetic
field 𝐻 is parallel to the reference axis 𝑅 in the magnetizing process, (b)
the magnetization reversal process where 𝐻 is antiparallel to the refer-
ence axis 𝑅.

This paper directly shows the analytic solution of θ (the
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angle between the anisotropy field 𝐻K and the reference axis
𝑅) varying with α (the angles between the saturation mag-
netization 𝑀S and the reference axis 𝑅) by using the anti-
trigonometric function. Due to the anti-trigonometric function
y = f (x) is symmetric about y = x, the relation of α ∼ θ at
different applied magnetic fields is also exposed. Then, the
hysteresis loops magnetized in any direction are obtained by
using M = MS cosα . Using these loops, the hysteresis loops
are obtained in the randomly oriented and non-interacting SW
particle ensembles. Finally, the correctness of the analytic so-
lution is verified by fitting the exact solutions of remanence,
switching field and coercivity.

2. Anisotropy free energy density
The spherical SW particle is shown in Fig. 1. The total

free energy density F including Zeeman energy and anisotropy
energy. For the magnetizing and magnetization reversal pro-
cesses, F can be expressed as

F(α) =−K
2

cos2(θ −α)−µ0MSHcosα, (1a)

F (β ) =−K
2

cos2
[(

π

2
−θ

)
+β

]
−µ0MSHcos

(
π

2
−β

)
, (1b)

where K is the anisotropy constant, µ0 is the vacuum perme-
ability, MS is the saturation magnetization, and H is the ap-
plied magnetic field. θ is the angle between the anisotropy
field 𝐻K and the reference axis 𝑅, and α (β ) is the angle be-
tween the saturation magnetization 𝑀S and the reference axis
𝑅 (the perpendicular direction of the reference). The stable di-
rection of saturation magnetization can be determined by the
minimum of the free energy density

∂F(α)

∂α
=− [sin2(θ −α)−2hsinα] = 0, (2a)

∂ 2F(α)

∂α2 = 2 [cos2(θ −α)+hcosα]> 0, (2b)

∂F(β )

∂β
= [sin2(θ −β )−2hcosβ ] = 0, (3a)

∂ 2F(β )

∂β 2 =−2 [cos2(θ −β )−hsinβ ]> 0, (3b)

where h = H/HK is the reduced field and HK = 2K/µ0MS is
the anisotropy field.

3. The anti-trigonometric solution of α ∼ θ

It can be directly obtained from Eqs. (2a) and (3a)

θ(α) = α +
1
2

arcsin(2hsinα) , (4a)

θ (β ) = β +
1
2

arcsin(2hcosβ ) . (4b)

Let θ(α) = f (α) and θ(β ) = g(β ). The anti-trigonometric
solution of α can be directly obtained from Eqs. (4a) and (4b)

α= f−1 (θ) , (5a)

α =
π

2
−β =

π

2
−g−1 (θ) . (5b)

The former and latter reflect the solution of the magnetizing
and magnetization reversal processes, respectively. Determin-
ing all possible stable solutions in Eqs. (4a) and (4b) are the
key to obtain the magnetizing curves and hysteresis loops us-
ing Eqs. (5a) and (5b).

It is known that the domain of the y = arcsin(x) is
[−1,1], and the range is [−π/2,π/2].[30] It can be seen that
the domain of Eqs. (4a) and (4b) satisfies −1 ≤ 2hsinα ≤ 1
and −1≤ 2hcosβ≤ 1, respectively. Then their ranges are
−π/4 ≤ (θ −α) ≤ π/4 and −π/4≤(θ −β )≤π/4. Because
(θ −α) is the angle between the saturation magnetization and
the anisotropy field, we can obtain the solution in −π/4 ≤
(θ −α) ≤ π/4 by Eq. (4a), as shown in the grey area I of
Fig. 2. Considering β = α −π/2, we can obtain the solution
in −3π/4 ≤ (θ −α) ≤ −π/4 by Eq. (4b), as shown in the
yellow area I of Fig. 2. If we consider another direction of
the anisotropy field where the magnetization deviates from the
easy axis, Eqs. (4a) and (4b) can describe the gray and yellow
areas II in Fig. 2, respectively. Therefore, Eqs. (4a) and (4b)
completely describe the magnetization deviating from the easy
axis in the SW model under the applied magnetic field in the
entire space.

II

I

I

II

45Ο

-135Ο
-45Ο

0Ο

HK

Fig. 2. The solution of Eqs. (4a) and (4b). I and II represent the results of
the magnetization deviating from the anisotropy field HK and −HK , respec-
tively. The gray and yellow areas represent the results of magnetizing and
magnetization reversal, respectively.

The relation curve of θ∼α can be obtained by Eqs. (4a)
and (4b), as shown in Fig. 3(a). The solid line and the dot-
ted line respectively represent the θ = f (α) and θ = g(β ),
when θ is limited in [0,π/2]. As the reduced field h chang-
ing in [−∞,−1] and [−0.5,∞], the solutions of Eqs. (4a) and
(4b) show a continuous curve of θ ∼ α . Moreover, it is not
a continuous curve of θ ∼ α when h changes in (−1,−0.5),

040202-2



Chin. Phys. B 31, 040202 (2022)

as shown by the curve of h = −0.6 and −0.75 in Fig. 3(a). It
is because that the magnetization will jump when h changes
in (−1,−0.5).[22,23] The position (α,θ) of the horizontal tan-
gent of the curve corresponds to the unstable position under
the switching field hSW. According to the definition of the
anti-trigonometric function,[30] the function α = f−1(θ) can
be obtained by symmetrically transforming θ = f (α) with a
straight line θ = α . This result can be used to obtain the sta-
ble magnetization angle α when the applied magnetic field
changes under a given applied field angle θ .

0 30 60 90 120 150 180

0

30

60

90

θ
 (
Ο
)

α (Ο) 

h=1.5

h=0.75

h=0.6

h=0

h=-0.5

h=-0.6

h=-0.75

h=-1.5

Fig. 3. The relation curve of θ ∼ α with different reduced fields h as 1.5,
0.75, 0.6, 0, −0.5, −0.6, −0.75, and −1.5, respectively. The solid line and
the dotted line are the solutions of Eqs. (4a) and (4b), respectively.

4. Hysteresis loops
Let the direction of reference axis 𝑅 be the initial direc-

tion of 𝐻 . The hysteresis loop is the projection of the magne-
tization in the reference axis direction. In a uniaxial system,
when 𝐻 changes, the deviation of the magnetization from the
easy axis involves two anisotropy field directions. If the angles
between 𝐻 and the two anisotropy fields are the same, the an-
gle of the magnetization deviating from the easy axis is equal.
Therefore, we only need to deal with one case where the mag-
netization deviates from an anisotropy field. Another case can
be described in the hysteresis loop through an inversion center
of the previous result.

For the first case, the relation curve of cosα∼θ under
different reduced fields h in the reference direction 𝑅 can
be obtained by using the function α = f−1(θ), as shown in
Fig. 4(a). For any given applied field angle θ , cosα = M/MS

under different reduced fields h is obtained on the cosα ∼ θ

curve in the order of reduced field h from large to small
and from positive to negative. Then we plot the points of
(h,M/MS) in sequence to get the magnetizing and magneti-
zation reversal curves. Figure 4(b) shows the relation curve of
M/MS ∼ h at θ = 16.6◦ and 73.4◦. To demonstrate this idea,
we take θ = 73.4◦ as an example to illustrate the specific pro-
cess. The points A, B, C1,2, and D correspond to the points
(h, M/MS) under h = 1.5, 0, −0.6, and −0.5 in Figs. 4(a) and

4(b). C1 and C2 are the points before and after the magnetiza-
tion jump under the switching field hSW =−0.6. Then, in the
coordinate system with M/MS as the vertical axis and h as the
horizontal axis. We can draw points from A, and then draw
the remaining (h, M/MS) points in descending order of the re-
duced field h, including the remanence B under h = 0 and C1

and C2 under switching field hSW =−0.6. Finally, we draw to
D. Connect all the points into a line to get the magnetizing and
magnetization reversal curves of the first case, as shown in the
red solid line of Fig. 4(b). The red dotted line in Fig. 4(b) is the
center inversion of the first case. It is worth noticing that there
is no saturation magnetization in the magnetic moment at other
applied field angles, except for θ = 0◦ and 90◦. This model
can also be used to judge the stable magnetization position and
saturation magnetization in the measurement of soft magnetic
high-frequency[11] and magnetoelectric transport.[17]

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

-1.0

-0.5

0

0.5

1.0
(b)

D

B

A

hSW=-0.6

h

16.6Ο

16.6Ο

73.4Ο

73.4Ο

Dot

0 30 60 90

-1.0

-0.5

0

0.5

1.0
(a)

C2

C2

D

B

C1

C1

A

84.2Ο5.7Ο 16.5Ο 73.4Ο

h=1.5

h=0.75

h=0.6

h=0

h=-0.5

h=-0.6

h=-0.75

h=-1.5

θ (Ο)

M
/
M

S
c
o
sα

Fig. 4. (a) The relation curve of cosα∼θ with different reduced fields h as
1.5, 0.75, 0.6, 0, −0.5, −0.6, −0.75, and −1.5. The dotted line is the re-
lation curve of cosα∼θ after the magnetization jumps under hSW, which is
equal to the relation curve of −cosα∼θ under −hSW. (b) The hysteresis
loop at θ = 16.6◦ and 73.4◦. The points A, B, C1,2 and D in panels (a) and
(b) correspond to the points (h, M/MS) under h = 1.5, 0, −0.6, and −0.5 at
θ = 73.4◦.

5. Randomly oriented and non-interacting SW
particle ensembles
Based on the relation curve of M/MS∼θ , the represen-

tative hysteresis loops of the randomly oriented and non-
interacting SW particle ensembles can be obtained. Because of
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-1.0 -0.5 0 0.5 1.0
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0
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M
/
M

S

H/Hk

(c)

θ1

θ2

Dθ

H

θ1

θ2
Dθ

H

Fig. 5. (a) Schematic illustration of the SW particle ensembles in a two-
dimensional (2D) plane. The distribution of SW particles at different angles
θ is uniform. (b) The SW particles are not uniformly distributed as the an-
gle θ increases in three-dimensional (3D) systems. (c) The hysteresis loops
of SW particle ensembles and the blue dotted line is given by Stoner and
Wohlfarth in 1948.

the different distribution of SW particles in different dimen-
sions, we use two different averaging methods to deal with.
For the first case, the distribution of SW particles in all di-
rections is equal with the increase of θ in a 2D plane. Then,
we divide the central angle into n parts (n→ ∞) along the di-
rection of H, and each part is ∆θ . The length of the circle is
also divided into n parts, and each arc length is ∆L = R∆θ , as
shown in Fig. 5(a). According to the symmetry of the SW
model,[1] the hysteresis loop of θ in the interval [0,π] and
[π,2π] is equal. Therefore, the hysteresis loops of the SW
particle ensembles can be obtained in θ ∈ [0,π]

M (h) =
∑
i

R∆θM (h)i∫
π

0 Rdθ
=

∑
i

∆θM (h)i

π
. (6)

M(h)i is the magnetization under the reduced field h at the ap-
plied field angle θ , and ∆θ is the adjacent angular interval.
Another situation is in a 3D sphere. The associated revolution
surface will be larger as the angle θ increasing in the range of
θ ∈ [0,π/2], so SW particles do not have the same number in
every direction. In order to solve this problem, the central an-
gle is equally divided into n parts (n→ ∞). The sphere is also
divided into n slices at the same time, as shown in Fig. 5(b).
Then the peripheral area of a thin slice is ∆s = 2πR2sinθ∆θ

(θ∈ [0,π]), the hysteresis loops in the plane could be refined
following spheroidal-based weighting[1,31]

M(h) =
∑
i

2πR2sinθi∆θM(h)i∫
π

0 2πR2sinθ dθ

=
1

4π
∑

i
2πsinθi∆θM(h)i. (7)

θi is the angle between 𝐻 and the anisotropic field Hki at po-
sition i. A total of 540 equiangular spaced (∆θ = 0.33◦) hys-
teresis loops of the applied field angle θ from to π can be
obtained by Eqs. (6) and (7) as shown in Fig. 5(c). The red
line represents the hysteresis loop of SW particle ensembles
in a two-dimensional plane, and the black line is the result in
a three-dimensional sphere. It completely coincides with the
result given by Stoner and Wohlfarth in 1948.[1]

6. Verifying the correctness of the analytic solu-
tion
In order to verify the correctness of the above analytic so-

lution, we fit the numerical solutions of remanence, switching
field and coercivity with the exact solutions. It is known that
the remanence Mr is the projection of the magnetization in the
initial direction of 𝐻 when 𝐻 drops from the saturation mag-
netization to zero,[32]

Mr = MScosθ . (8)

The switching field, where an irreversible jump of the
magnetization direction occurs, is given by the condition
∂F (α)/∂α = ∂ 2F (α)/∂α

2 = 0, which leads to[23,24]

HSW = HK

(
sin2/3

θ + cos2/3
θ

)−3/2
, (9)

The coercivity of all applied angles are[1,33]

HC = HK

(
sin2/3

θ + cos2/3
θ

)−3/2
, 0≤ θ ≤ π

4
,

HC =
1
2

HKsin2θ ,
π

4
≤ θ ≤ π

2
. (10)

Based on the relation curve of cosα ∼ θ , the numerical solu-
tions of coercivity, switching field, and remanence also can be
obtained in different applied field directions, as shown in the
dot of Fig. 6. Moreover, the numerical solutions can be com-
pletely fitted with Eqs. (8)–(10), as shown in Fig. 6, which
verifies the correctness of the analytic solution.
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Fig. 6. The numerical (dot) and exact (line) solutions of coercivity, rema-
nence, and switching field.
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7. Conclusion
We divide the stable position where the magnetization de-

viates from the easy axis into two regions based on the dif-
ference between magnetizing and magnetization reversal pro-
cesses and obtain the analytic solutions in the entire space by
the anti-trigonometric function. Based on the relation curve of
θ ∼ α , cosα ∼ θ under different reduced field h can be ob-
tained, and then the hysteresis loops under any applied field
angle can be obtained. In addition, the hysteresis loops with
the easy axis of the non-interacting SW particle ensembles
randomly orienting in two dimensions and three dimensions
also can be obtained by the relation curve of cosα∼θ . The
results of remanence, switching field, and coercivity obtained
by the analytic solution are consistent with the exact solutions
of the above three physical quantities. The analytic solution of
the SW model is of great help to understand the actual magne-
tization reversal mechanism of SW particles.
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