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A fully convolutional encoder–decoder network (FCEDN), a deep learning model, was developed and applied to image
scanning microscopy (ISM). Super-resolution imaging was achieved with a 78 µm×78 µm field of view and 12.5 Hz–40 Hz
imaging frequency. Mono and dual-color continuous super-resolution images of microtubules and cargo in cells were
obtained by ISM. The signal-to-noise ratio of the obtained images was improved from 3.94 to 22.81 and the positioning
accuracy of cargoes was enhanced by FCEDN from 15.83±2.79 nm to 2.83±0.83 nm. As a general image enhancement
method, FCEDN can be applied to various types of microscopy systems. Application with conventional spinning disk
confocal microscopy was demonstrated and significantly improved images were obtained.
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1. Introduction
Resolution enhancement is at the heart of the develop-

ment of microscopic technologies and is therefore a long-
term goal for researchers. Since the beginning of the 21st
century, super-resolution fluorescence imaging technologies
that break the far-field optical diffraction limit, i.e., the Abbe
limit that was established about 150 years ago, have been
greatly developed. At present there are three main types of
super-resolution fluorescence microscopy imaging technolo-
gies widely used in life science research. Stimulated emission
depletion (STED) technology, which uses a Gaussian-shaped
excitation laser and a doughnut-shaped depletion laser, mini-
mizes the effective point spread function.[1–7] Single-molecule
localization microscopy (SMLM), including photoactivated
localization microscopy (PALM) and stochastic optical recon-
struction microscopy (STORM), labels samples with a pho-
toactivatable or photoswitchable fluorescent probe. Super-
resolution images are reconstructed by collecting and local-
izing a large number of single molecules.[1,8–11] Structured il-
lumination microscopy (SIM)[1,12–16] and image scanning mi-
croscopy (ISM)[1,17–32] are based on the use of a known spa-
tially structured pattern (periodic sine pattern or Gaussian-
shaped spot) of excitation light. The resolution of STED is
roughly 40 nm–100 nm and the laser power applied is of the
order of megawatts per square centimeter.[1–7] The spatial res-
olution of PALM/STORM can reach 10 nm–40 nm, while the
temporal resolution is of the order of minutes and the laser

power is of the order of kilowatts per square centimeter.[1,8]

The resolution of SIM and ISM approach about half the Abbe
limit, reaching 100 nm–150 nm, and the laser power is of the
order of watts per square centimeter.[1,18–32]

Although the resolutions of SIM and ISM super-
resolution microscopies are not as high as those of STED
and PALM/STORM, the latter two require a strong excita-
tion power and special fluorescent probes. Therefore, super-
resolution imaging methods based on SIM and ISM technol-
ogy are the most commonly used for live cell imaging.[1] Two-
dimensional structured illumination microscopy (2D-SIM)
needs to collect nine frames of raw recording to reconstruct
a super-resolution image with a spatial resolution of about
100 nm.[1] The spatial resolution of ISM is about 120 nm–
150 nm,[1] and a super-resolution image can be obtained by
only collecting one raw image. Due to the working principle,
compared with 2D-SIM, ISM has the advantage of faster imag-
ing (about nine times faster). In life sciences, fluorescence mi-
croscopy is a driving force for new discoveries. However, the
observable phenomena are limited by the microscopic imag-
ing method, the chemistry of the fluorophore and the max-
imum light exposure that the sample can withstand. These
limitations result in a trade-off between imaging speed, spa-
tial resolution, exposure and imaging field of view. Weigert et
al.[33] demonstrated that a content-aware image restoration
based deep learning method can achieve image enhancements
both with confocal microscopy and wide-field microscopy.
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Another application of deep learning is to convert dif-
ferent fluorescence imaging modalities (computational, non-
optical).[34] This data-driven method does not require numeri-
cal modeling of the imaging process or estimation of the point
spread function, and is based on generative adversarial net-
work training to convert diffraction-limited raw images into
super-resolution images. For instance, it can convert a low-
resolution confocal microscopy image to a super-resolution
image close to STED microscopy.[34] A well-trained neural
network can produce super-resolution images directly without
any iteration or parameter search, and can be used as a low-
cost super-resolution imaging technology.

Deep learning has also demonstrated its potential in
SMLM. Because the imaging speed of SMLM is very lim-
ited (since it needs to accumulate thousands of image frames)
the number of molecules detected in each frame is very few.
Ouyang et al.[35] proposed artificial neural network acceler-
ated PALM (ANNA-PALM), a computational strategy that
uses artificial neural networks to reconstruct super-resolution
image from sparse and rapidly acquired single-molecule po-
sitioning wide-field images. It significantly reduces acquisi-
tion time and sample light exposure, enabling a faster and
high-throughput super-resolution imaging method that is com-
patible with biological samples. Using a deep convolutional
neural network, based on a simulated and measured high-
density single-molecule positioning fluorescence image train-
ing set, Deep-STORM improves the performance of high-
density SMLM and can handle single-molecule data with a
density of up to six emitters per µm2.[36]

Deep learning has not only been applied for 2D flu-
orescence microscopy imaging but also for 3D imaging to
improve image qualities, for instance Deep-Z, SRRF-Deep,
VCD-LFM, etc.[28,37,39] Deep-Z reconstructs 3D fluorescence
images from a single 2D wide-field image, and improves the
volumetric imaging speed significantly.[37] SRRF-Deep en-
hances the spatial and temporal resolution of 3D spinning disk
confocal microscopy.[38] VCD-LFM enhances the reconstruc-
tion throughput and spatial resolution uniformity of 3D light-
field microscopy.[39]

At the same time, the field of view, imaging speed and
image resolution are mutually restricted. As a state-of-the-art
tool, deep learning methods have not yet been applied to high-
speed super-resolution ISM. This work developed a fully con-
volutional encoder–decoder network (FCEDN) and applied it
to super-resolution ISM (Olympus SpinSR10), achieving a
78 µm×78 µm field of view, an acquisition speed of 12.5 Hz–
40 Hz and super-resolution imaging at the same time. Super-
resolution high-speed dynamic images of microtubules and
cargoes with a large field of view were recorded for 30 s.

Dynamic super-resolution motion of cargoes along the micro-
tubules was observed. This method was also applied to con-
ventional confocal microscopy, verifying its generality.

2. Methods
2.1. The FCEDN method

Deep learning is that part of a machine learning method
concerned with algorithms and training datasets. The FCEDN
method was inspired by high-density deep learning SMLM
(Deep-STORM).[36] The FCEDN was separated into encoding
and decoding stages, as shown in Fig. 1. Input was normalized
using the Min–Max scaling function and standardized by the
z-score function before feeding into the network.[36] In the en-
coding stage, the preprocessed input images were transformed
into feature maps by three encoding layers, each consisting of
convolutional filters with increasing depth, batch normaliza-
tion and rectified linear unit (ReLU),[40] and interleaved with
2× 2 max-pooling layers. In the decoding stage, the feature
maps were produced to the same size as the input image by
three decoding layers, each consisting of convolutional filters
with decreasing depth, batch normalization and ReLU, inter-
leaved with 2× 2 upsampling layers. Finally, a 1× 1 convo-
lutional filter was used to reduce the depth and produce the
prediction. The size of each convolutional filter was 3× 3.
The network encoded the image with a low signal-to-noise ra-
tio (SNR) into an aggregated feature map, then decoded and
predicted the corresponding high-SNR image.

The optimization goal for training the deep learning mod-
els is determined by the loss function, and the loss function
evaluates how well the algorithm models the datasets.[41] In
this work, the loss function was defined as

l (g, p(i;Θ)) =
1
N

N

∑
n=1
||g− p(i;Θ) ||22 + ||p(i;Θ) ||1, (1)

where g represents the ground truth (GT) image, p represents
the predicted image, i represents a low-quality image, Θ repre-
sents the parameters of FCEDN and N represents the number
of images in the training set. The first term of Eq. (1) mea-
sures the squared L2 distance between the prediction and the
ground truth. The second term represents the L1 norm of the
FCEDN’s prediction and is a regularization term to promote
sparsity.

When training a deep learning model, batch size has sig-
nificant impact on the performance. If the batch size is too
small, the model became unstable and quickly converges to
the local minimum. If the batch size is too large, the GPU
memory of commonly available graphics cards is insufficient.
We made a trade-off between model performance and GPU
computational cost. After testing, the batch size was set to

048705-2



Chin. Phys. B 31, 048705 (2022)

16. The FCEDN was trained using an Adam optimizer with
an initial learning rate of 0.001; other parameters were as
defaults.[42] All experiments were executed in Python using
Keras with a TensorFlow backend.[43] Training was performed
on an Nvidia Tesla v100 GPU with 32 GB of video memory.
In order to evaluate the performance, the structural similar-
ity (SSIM) index between the image reconstructed by FCEDN
and the GT image was calculated;[44] at the same time, in order
to quantify the image enhancement, the SNR was evaluated[45]

by

SNR =
√

I−B, (2)

where I and B, respectively, represent the average signal
strength of the sample structure and the average background
of the image, as calculated by the Otsu automatic segmenta-
tion algorithm.[46]
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Fig. 1. Neural network architecture. A set of low-SNR images was fed into
the neural network to produce high-SNR images. The numbers below fea-
ture maps represent the number of convolutional filters in the corresponding
block.

2.2. Cell culture

The Cos-7 cell line was purchased from the American
Type Culture Collection (ATCC) and cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 1% 100 mM sodium pyruvate solution (S8636, Sigma-
Aldrich) and 10% fetal bovine serum (FBS). The human reti-
nal pigment epithelium (HRPE) cell line was provided by
Professor Wei Guo (University of Pennsylvania) and cul-
tured in DMEM/Ham’s F-12 (#11320033, Invitrogen) with
100 µg·ml−1 penicillin, streptomycin (Invitrogen) and 10%
FBS (#16010-159, Gibco). Cells were cultured in a 10 cm dish
with cell culture medium under general conditions with 5%
CO2 at 37 ◦C. For cell passage, after washing three times with
phosphate buffered saline (PBS) (#14190500BT, Life Tech-
nologies), cells were digested with 0.25% trypsin (#25200-
056, Gibco) for 1 min. Digestion was terminated with 10%
FBS. All cells were negative for mycoplasma with a poten-
tial mycoplasma contamination test (MycoAlert, Lonza). To
label microtubules and cargoes, HRPE or Cos-7 cells were
seeded on preincubated glass coverslips for 24 h. Then, the

plasmid DNA (4 µg MAP4-GFP and 0.5 µg SBP-mCherry-
Ecadherin) was co-transfected into cells and downstream ex-
periments were performed 24 h later.[47]

2.3. Electroporation

After digestion, cells were transiently transfected with an
electroporation cup (#165-2086, Bio-Rad) using a 2D nucleo-
fector device (Lonza). The programs X-001 and W-001 were
designed for HRPE and Cos-7 cells. The electroporation so-
lution was composed of solution I and solution II. Solution I
included 0.12 g·ml−1 MgCl2–6H2O (M2393, Sigma Aldrich)
and 0.2 g·ml−1 ATP-disodium salt (A2383, Sigma Aldrich)
with pH 7.4. Solution II included 0.4 g·ml−1 glucose (G-
6152, Sigma Aldrich), 12 g·ml−1 KH2PO4 (P5655, Sigma
Aldrich) and 1.2 g·ml−1 NaHCO3 (S-5761, Sigma Aldrich)
with pH 7.4. After filter sterilization (0.22 µm), solutions I
and II were mixed in the ratio of 1:50 and stored at 4 ◦C.[47]

2.4. Plasmids

MAP4-pEYFP, a microtubule marker, was provided by
Professor Yujie Sun. The media-Golgi markers ManII-GFP,
TNF-SBP-mCherry puromycin (#65285, TNF only, no hook,
RUSH system) and SBP-mCherry-Ecadherin puromycin
(#65293, Ecadherin reporter only, no hook, RUSH system)
were presented by Professor Xiaowei Chen (School of Future
Technology, Peking University).[47]

2.5. Immunofluorescence staining

Cells were seeded into a 35 mm cell culture image dish
(#043520B, Shengyou Biotechnology) with 70% confluence.
After 24 h, the cells were fixed with 4% paraformaldehyde
containing 0.1% glutaraldehyde for 12 min at 37 ◦C and
washed twice with 2 ml PBS. Then, the cells were treated with
0.5 ml 0.1% NaBH4 for 7 min at room temperature to quench
the cell self-fluorescence and washed three times with 2 ml
PBS. Cell membrane permeability was then blocked with 5%
bovine serum albumin (BSA) (#001-000-162, Jackson) con-
taining 0.5% Triton X-100 (Fisher Scientific) for 30 min at
room temperature. All the antibodies used were prepared by
dilution in 5% BSA containing 0.5% Triton X-100. Cells were
incubated at room temperature for 40 min with an appropri-
ately diluted primary antibody. After removal of the primary
antibody, cells were washed three times with PBS for 5 min
each time. The appropriate dilution of the dye-labeled sec-
ondary antibody was then incubated with the cells for 1 h at
room temperature, hidden from light. After removal of sec-
ondary antibody, cells were washed five times with PBS for
5 min each time. Finally, cells were post-fixed for 10 min
with 4% paraformaldehyde containing 0.1% glutaraldehyde.
All specimens can be stored in PBS for a week at 4 ◦C. If
longer storage is required, all specimens should be cleaned
three times in double-distilled water and then air-dried.[47]

048705-3



Chin. Phys. B 31, 048705 (2022)

2.6. Microscopy

Measurements were performed on an ISM Olympus
SpinSR10 super-resolution spinning confocal fluorescence
microscope. In its super-resolution (SoRa) mode, the spin-
ning disk speed was set to 4000 rpm. The fluorescence was
collected by an UPLAPO OHR 60× NA 1.5 objective and
then passed through a four-band-pass D405/488/561/640 fil-
ter module. The detection optical path adopted a further 3.2×
magnification, and the total magnification was 192 times. Sig-
nals were collected by a sCMOS camera (Hamamatsu ORCA-
Fusion) with 2304× 2304 pixels. The extended EM gain of
the camera was set to 1 and the camera pixel clock was set
to its highest speed, 480 MHz. The final size of the field of
view on the object plane was 78 µm×78 µm. The setup was
equipped with Coherent 405 nm, 488, 561 nm, and 640 nm
lasers. The Olympus SpinSR10 can be switched to conven-
tional spinning disk confocal mode. In our experiments, the
UPLAPO OHR 100× NA1.5 objective was used without the
further 3.2×magnification. The total magnification was 100×
and the size of the field of view on the object plane was
149.8 µm×149.8 µm.

3. Results and discussion
Although deep learning has achieved great success in im-

age processing, it has failed to be generalized to given images
with unseen image patterns.[48,49] Therefore we trained two
sets of the FCEDN model for microtubule and cargo datasets,
applied respectively.

3.1. Microtubule FCEDN training

Fixed and immunofluorescence labeled Cos-7 cell micro-
tubules were used for FCEDN training. Controlled micro-
tubule images under five different imaging conditions were
collected. The imaging conditions were the same except
for the exposure time and the power of the 640 nm laser.
Ninety-nine sets of 2304× 2304 pixel images under five dif-
ferent imaging conditions randomly extracted 256× 256 re-
gions 100 times for each image. The training set was 39600
pairs of low-SNR regions (256× 256) of images and high-
SNR regions (256× 256, GT) of images. In Fig. 2(a), the
first row shows the raw images of microtubules with low SNR
under different imaging conditions. The third row shows the
GT images, and the second row shows the images recon-
structed by the FCEDN. Figure 2(b) shows the imaging condi-
tions from C1, C2, C3, C4 to GT respectively: exposure time
(5 ms), laser power (7%); exposure time (5 ms), laser power
(10%); exposure time (5 ms), laser power (20%); exposure
time (5 ms), laser power (4%); exposure time (500 ms), laser
power (100%). As shown in Fig. 2(c), the SSIM between raw
images under different experimental conditions (C1–C4), the
FCEDN reconstructed images and the GT images increased

from 5.71%, 6.80%, 10.18%, and 15.30% to 78.18%, 80.57%,
82.21%, and 81.21%, respectively. The corresponding SNRs
were increased from 3.56, 4.16, 5.75 and 8.00 to 81.21, 86.72,
91.96, and 94.88, respectively.

(a)

(b) (c)

C1 C2 C3 C4Input

Prediction

Ground truth

Exposure (ms)

Laser power (%)

0 500

0 100

GT

C1

C2

C3

C4

C1 C2 C3 C4

Input
Deep learning

1.0

0.5

0

S
S
IM

Fig. 2. ISM microtubule FCEDN training. (a) Input, reconstructed and GT
images of fixed Cos-7 cell microtubules. (b) Five imaging conditions for GT
and conditions C1–C4. (c) Prediction error for data under imaging condi-
tions C1–C4. The plots show SSIM for input and reconstructed images were
significantly improved (higher is better). Scale bar = 10 µm.

3.2. Cargo FCEDN training

Fixed and immunofluorescence labeled Cos-7 cell car-
goes were used for FCEDN training. Controlled cargo im-
ages under four different imaging conditions were collected.
The imaging conditions were the same except for the ex-
posure time and the 561 nm laser power. Ninety-nine sets
of 2304× 2304 pixel images under four different imaging
conditions randomly extracted 256× 256 regions 100 times
for each image. The training set was 29700 pairs of low-
SNR regions (256× 256) of images and high-SNR regions
(256× 256, GT) of images. In Fig. 3(a), the first row shows
the raw images of cargoes with low SNR under different imag-
ing conditions. The third row shows the GT images, and
the second row shows the images reconstructed by FCEDN.
Figure 3(b) shows the imaging conditions from C1, C2, C3
to GT, respectively: exposure time (10 ms), laser power
(100%); exposure time (20 ms), laser power (10%); exposure
time (30 ms), laser power (100%); exposure time (500 ms),
laser power (100%). As shown in Fig. 3(c), the SSIM be-
tween raw images under different experimental conditions
(C1–C3), FCEDN reconstructed images and the GT images
were increased from 20.14%, 35.45%, and 46.21% to 91.26%,
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91.62%, and 91.79%, respectively. The corresponding SNRs
were increased from 8.77, 12.21 and 14.65 to 45.21, 54.23,
and 57.66, respectively.

C1 C2 C3
(a)

(b) (c)

Prediction

Ground truth

Input C1 C2 C3

Exposure (ms)
0 500

Laser power (%)
0 100

GT

C1

C2

C3

C1 C2 C3

Input
Deep learning

1.0

0.5

0

S
S
IM

Fig. 3. ISM cargo FCEDN training. (a) Input, reconstructed and GT images
of fixed Cos-7 cell cargoes. (b) Four imaging conditions for GT and con-
ditions C1–C3. (c) Prediction error for data at imaging conditions C1–C3.
The plots show SSIM for input and reconstructed images were significantly
improved (higher is better). Scale bar = 10 µm.

3.3. Live cell microtubule imaging

The well-trained microtubule FCEDN described in Sub-
section 3.1 then was used for dynamic imaging enhancement
of HRPE living cell microtubules. Four hundred images of
HRPE living cell microtubules were continuously collected
with an exposure time of 10 ms and a frame rate of 40 Hz.
It can be seen from Fig. 4 that as the acquisition time in-
creases, the SNR of the raw image drops significantly due
to photobleaching while the SNR of the image reconstructed
by FCEDN only decreases slightly. SNRs were therefore im-
proved by FCEDN by nearly 10 times.

3.4. Live cell microtubule and cargo two-channel imaging

We used MAP4-GFP and Lysotracker to label the micro-
tubules and cargoes of living HRPE cells, and used 488 nm and
640 nm lasers for dual-color fluorescence excitation. Dynamic
super-resolution images of microtubules and cargoes were
continuously collected with the dual-color detection channel
by an ISM with an imaging speed of 12.5 Hz. The exposure
time was 10 ms. Figure 5(a) shows that using both well-trained

microtubule and cargo FCEDNs described in Subsections 3.1
and 3.2 obviously improved the image quality, and the average
SNR of microtubules and cargoes was increased from 4.37 and
3.95 to 79.27 and 18.61, respectively. The movements of car-
goes were tracked by fluorescent image evaluation software
for tracking and analysis (FIESTA).[5] The results show that
FCEDN improved the positioning accuracy of cargoes from
15.83± 2.79 nm to 2.83± 0.83 nm, and more accurate cargo
movement trajectories were obtained, as shown in Figs. 5(b)
and 5(c).
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Fig. 4. ISM FCEDN improves the SNR of living HRPE cell microtubules.
(a) Raw images of 400 continuous image frames of living HRPE cell mi-
crotubules at different time points. (b) Microtubule image reconstructed by
FCEDN. (c) The SNR of the raw microtubule image decreased with contin-
uous acquisition. (d) The SNR of the microtubule image reconstructed by
FCEDN remained largely constant. Scale bar = 10 µm.
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Fig. 5. Dual-color imaging of cargo movements along microtubules in liv-
ing HRPE cells. (a) Dual-color raw images of cargoes and microtubules
and FCEDN reconstructed images. (b) Distribution of the uncertainty of
raw and FCEDN reconstructed cargo positioning. The average values were
15.83±2.79 nm and 2.83±0.83 nm, respectively. (c) Raw cargo motion tra-
jectory and as reconstructed by FCEDN. Scale bars: 10 µm (left) and 2 µm
(right).
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3.5. FCEDN cross-modality imaging

The microtubule FCEDN described in Subsection 3.1
trained with super-resolution ISM was also used to enhance
conventional spinning disk confocal images. Image enhance-
ment was obvious compared with the conventional spinning
disk confocal images. Results for HRPE cell microtubules
are shown in Fig. 6. The laser power and exposure time were
changed for different imaging conditions. To collect conven-
tional spinning disk confocal images of microtubules, in all
measurements (C1, C2, C3 and C4), laser powers were set as
4%, 5%, 7%, and 10% 561 nm, respectively, and exposure
time was 10 ms for all. The SNRs of the raw images were
6.19, 6.86, 7.55, and 9.54, while the SNRs after FCEDN re-
construction were 83.62, 85.14, 80.04, and 81.42, respectively.

Raw data

Prediction

C1 C2 C3 C4

Fig. 6. FCEDN enhanced cross-modality image SNR from ISM to confocal
imaging. Input confocal microtubules images of HRPE cells with different
imaging conditions C1–C4 (top row) and the FCEDN reconstructed images
(bottom row). Scale bars = 20 µm.

4. Conclusion
FCEDN was established based on deep learning. Training

datasets were from super-resolution ISM. In this work, micro-
tubules and cargo structures of fixed cells were collected as
a training dataset. A wide field of view, fast super-resolution
continuous imaging model was built. The SNR was improved
from 3.94 to 22.81. The method was further applied to conven-
tional spinning disk confocal microscopy and image qualities
were significantly improved. This verified the generalized ap-
plication of FCEDN. For other cellular organs and structures,
the FCEDN method can be utilized with corresponding GT
and training sets. In this work, a training set was collected
using fixed cells since the targeted structure remained stable
upon fixation. For those cell structures that could be damaged
and cause artifacts during cell fixation, for instance mitochon-
dria, imaging with live cells is necessary. Since model training
can be influenced by intraocular and extraocular movements of
living cells, GT and training images can be collected with un-
even image intensity split dual-camera imaging. One camera
collects strong signals as GT and the other collects weak sig-
nals as training sets. Then FCEDN method also can be used
for living cells in motion.
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