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Effect of anode area on temperature sensing ability is investigated for a vertical GaN Schottky-barrier-diode sensor.
The current-voltage-temperature characteristics are comparable to each other for Schottky barrier diodes with different an-
ode areas, excepting the series resistance. In the sub-threshold region, the contribution of series resistance on the sensitivity
can be ignored due to the relatively small current. The sensitivity is dominated by the current density. A large anode area
is helpful for enhancing the sensitivity at the same current level. In the fully turn-on region, the contribution of series
resistance dominates the sensitivity. Unfortunately, a large series resistance degrades the temperature error and linearity,
implying that a larger anode area will help to decrease the series resistance and to improve the sensing ability.

Keywords: GaN, temperature sensor, Schottky contact, vertical diode
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1. Introduction
Gallium nitride (GaN) based Schottky barrier diodes

(SBDs) are key components for the next-generation high
power and high switching frequency devices, which are com-
monly adopted in switching power supply, wireless commu-
nications, drivers, and so on.[1–4] Compared with the planar
SBDs fabricated on the AlGaN/GaN structure, vertical devices
can achieve high power density and high breakdown voltage
by simply increasing the drift layer thickness other than ex-
tending the gate-to-drain distance.[5–10] Therefore, vertical de-
vices are preferable to sink chip size and decrease the cost.
Especially, with the tremendous progress in high quality GaN
substrates, vertical GaN SBDs have attracted a great deal of
attention in recent years.

On the other hand, GaN devices commonly generate
heat during static on-state and on/off switching.[11] This
heat dissipation will drastically increase the junction tem-
perature especially for vertical devices which handle higher
power densities. Generally, electrical parameters of SBDs are
temperature-dependent and will be degraded under a relatively
high temperature.[12] Hence, temperature monitoring plays a
key role in ensuring safe operation or quality control. How-
ever, the accuracy and reliability of the conventional thermo-
couples or resistive temperature sensors do not meet the re-
quest of high temperature environment.

Alternatively, GaN based Schottky barrier diodes (SBDs)
are a kind of promising candidates for in situ temperature
sensor applications due to the wide bandgap, good linear-
ity, and long-term stability. In our previous study, lateral,
quasi-vertical and vertical GaN-compatible temperature sen-

sors were fabricated and evaluated with thermally stable TiN
anode.[13–16] When the SBD works in sub-threshold region,
the forward voltage at a fixed relatively small current level de-
creases linearly versus temperature. It was demonstrated that
the sensitivity of the lateral and quasi-vertical SBD is depen-
dent on the anode area. However, the effect of anode area of a
vertical diode on the sensing characteristics is not investigated
extensively. In this work, vertical GaN SBDs with various an-
ode sizes are proposed to investigate the effect of anode area.
It is found that a large anode area helps to decrease the series
resistance and to enhance the sensitivity. The current density
and series resistance dominate the sensitivity in sub-threshold
region and fully turn-on region, respectively.

2. Experiments and characterization
The vertical GaN SBDs (Fig. 1) were fabricated on a

commercial free-standing wafer. The epitaxial structure and
the main processes were similar with our previous work.[15]

The electrode material and the sputtering conditions are listed
in Fig. 1. To improve the high temperature interface relia-
bility, we adopted a thermally stable TiN as the anode elec-
trode. Compared with the Ni and NiN anodes in our previ-
ous work,[14–17] the work function of TiN is approximately
4.7 eV. The relatively small Schottky barrier height (SBH,
Φb ∼ 0.6 eV) is beneficial to decrease the turn-on voltage (Von)
and on-state power loss.[17] On the other hand, the TiN can
effectively suppress the interface reaction between GaN and
the conventional metal anode. Good Schottky contact prop-
erties are maintained even after the 800 ◦C annealing for sev-
eral minutes.[18] Those results demonstrate that TiN is promis-
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ing for GaN SBD temperature sensor applications. Herein,
we focus on evaluating the effect of anode area on the sen-
sitivity. A series of SBDs with different anode radii (R =

55 µm, 70 µm, and 85 µm) were fabricated. To investigate
the temperature sensing ability and the mechanism, current-
voltage-temperature (I–V –T ) characteristics were measured
from 25 ◦C to 200 ◦C with steps of 25 ◦C.

Ti/Al/Ti/Au ohmic cathode
50/200/40/40 nm,
800 C, 1 min, in N2   

300 C, 10 min, in N2   

100/30/30nm, Ar:N2 (15:3 sccm)     
TiN/Ni/Au anode 

Post annealing

Cleaning

n+ GaN substrate 

n- GaN

Cathode

Anode

R

-

Fig. 1. Schematic view of the vertical GaN SBD temperature sensors
with different anode radii (R). The corresponding main fabrication pro-
cesses are also listed.

3. Results and discussions
The typical I–V –T characteristics of SBD with an anode

radius of 55 µm were recorded, as shown in Fig. 2(a). The Von

extracted by linear fitting the forward region is about 0.47 V,
which is consistent with previous reports.[14,17] In addition,
the I–V –T curves show a zero-temperature coefficient (ZTC)
point. Obviously, the variation of current versus temperature
are different in the bias regions above and below the ZTC
point (approximately 0.6 V). For the small forward voltage
(VF) region (below ZTC point), the voltage at a specific cur-
rent value decreases gradually with the increasing temperature
(negative coefficient). Noticeably, above the ZTC point (rel-
atively high VF region), the voltage at a specific current value
increases gradually with the increasing temperature (positive
coefficient).
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Fig. 2. The I–V –T characteristics (a) of vertical GaN SBD with an an-
ode radius of 55 µm. (b) The relationship between key parameters and
temperature.

Theoretically, the I–V –T curves of the SBD follow the
thermal emission (thermionic emission, TE) model. The for-
ward current ID under VF > 3kT/q reads[17]

ID = AeA∗T 2 exp
(
−qΦb

kT

)
exp

(
q(VF − IDRs)

nkT

)
. (1)

The VF is then solved as

VF = nΦb +
nkT

q

[
ln
(

ID

AeA∗

)
−2ln(T )

]
+ IDRs, (2)

where Ae, T , q, n, k, A∗ and Rs are the Schottky anode area,
Kelvin temperature, electronic charge, ideality factor, Boltz-
mann constant, Richardson constant (26.9 A·cm−2·K−2 in
our calculation) and series resistance, respectively. Based on
Eq. (2), the key parameters (Φb, n, and Rs) of the SBD versus
temperature with an anode radius of 55 µm are fitted and plot-
ted in Fig. 2(b). It is demonstrated that the Φb increases from
0.52 eV to 0.62 eV linearly with the increasing T , while the
n decreases from 1.4 to 1.0 linearly. In addition, we also find
that the Rs increases from 7.3 Ω to 17.2 Ω with temperature in
a slope of 57.1 mΩ/K. The variation of Φb and n versus tem-
perature are not consistent with the TE model, in which those
values should be constants. The possible reason is attributed
to the spatial fluctuation of Φb at interface, namely, the barrier
height inhomogeneous effect.[19] The carrier at relatively high
temperature gains more energy and then overcomes the high
barrier patch, resulting in a high average barrier height.

To evaluate the effect of anode radius on the electrical
properties, the I–V –T characteristics of SBDs with anode radii
of 70 µm and 85 µm are shown in Figs. 3(a) and 4(a), respec-
tively. The I–V –T characteristics of both diodes are compara-
ble with that of the small anode one, except the forward volt-
age that reaches the compliance current. By fitting the I–V –T
curves, the Φb of the 70 µm SBD increases from 0.61 eV to
0.67 eV, while the n decreases from 1.2 to 1.0 linearly with the
increasing T (Fig. 3(b)). The Φb of the 85 µm SBD increases
from 0.56 eV to 0.67 eV, while the n decreases from 1.2 to
1.0 linearly with the increasing T (Fig. 4(b)). Those values
and the variation trends are comparable to each other, imply-
ing that other factors are the root causes. It is worth noting that
the slopes of Rs are 37.1 mΩ/K and 26.3 mΩ/K for the 70 µm
(inset of Fig. 3(b)) and 85 µm (inset of Fig. 4(b)) diodes, re-
spectively. This indicates that the Rs presents an obvious effect
at the voltage region above the ZTC point.
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Fig. 3. The I–V –T characteristics (a) of the vertical GaN SBD with an
anode radius of 70 µm. (b) Relationship between key parameters and
temperature.
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Fig. 4. The I–V –T characteristics (a) of the vertical GaN SBD with an
anode radius of 85 µm. (b) Relationship between key parameters and
temperature.

The relationship between forward voltage and tempera-
ture is commonly used for determining the sensitivity. Fur-
thermore, the sub-threshold region is preferable for temper-
ature sensing application due to the relatively small power
loss. When we choose a specific current (1×10−5, 1×10−4,
5×10−4, or 1×10−3 A in our experiment), the corresponding
forward voltage on the I–V –T curves shifts negatively with the
increasing temperature (Fig. 5(a)). The variation of this for-
ward voltage versus temperature is then plotted in Fig. 5(b).
Under four selected current levels, the corresponding forward
voltage decreases with increasing temperatures, implying that
the slope is negative (Fig. 5(b)). Based on the absolute slope
of the fitting line, the measured sensitivities Sm are deduced
to be 1.19, 1.2, 1.14, and 1.13 mV/K at 1× 10−5, 1× 10−4,
5 × 10−4, and 1 × 10−3 A, respectively. Based on Eq. (2),
the VF is determined by three main parts. Firstly, we confirm
that the production nΦb shows slight dependence on temper-
ature (Fig. 6(a)), which is ascribed to the opposite variation
trends of Φb and n. Secondly, the voltage drop contributed
by the Rs (I × dRs/dT ) is smaller than 0.05 mV/K due to the
small current in sub-threshold region. In addition, the non-
linear part of lnT can also be ignored in relatively small tem-
perature range.[20] Hence, the sensitivity dVF/dT is correlated
with the current density ID/Ae as

dVF

dT
∝

nK
q

ln
(

ID

AeA∗

)
. (3)

Therefore, the sensitivity is mainly determined by the ideality
factor n, current level ID and anode area Ae, but is not related
with the wafer structure and diode geometry (circular, finger,
dot, etc.). The above discussion is confirmed by the decreasing
trend of sensitivity versus current level, which is proportional
to the logarithms of current density (Fig. 6(b)). Because an
ideal SBD follows the TE model, the change of anode mate-
rial (variation in Φb and reverse leakage current) has no direct
effect on the sensitivity. In addition, although the interface re-
action for the metal anode on GaN generates a relatively higher
n and contributes to the sensitivity, the degradation of reliabil-
ity is unsuitable for high temperature applications.
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Fig. 5. (a) The sub-threshold region I–V –T characteristics of the verti-
cal GaN SBD with an anode radius of 55 µm. (b) The VF–T relationship
at different current levels.
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Fig. 7. (a) The sub-threshold region I–V –T characteristics of the verti-
cal GaN SBD with an anode radius of 70 µm. (b) The VF–T relationship
at different current levels.

To evaluate the effect of anode area on the sensitivity, the
sub-threshold region of I–V –T characteristics for the SBDs
with anode radii of 70 µm and 85 µm are also plotted in
Figs. 7(a) and 8(a), respectively. Then, the corresponding VF–
T relationships at different currents with the fitting line are
plotted in Figs. 7(b) and 8(b), respectively. Obviously, good
linearity can be observed for all the VF–T curves, and the de-
duced sensitivities are summarized in Fig. 6(b). On the one
hand, the production of Φb and n shows slight dependence
on temperature (Fig. 6(a)). On the other hand, the voltage
drop contributed by the Rs (SR, the production of dRs/dT
and current) is smaller than 0.04 mV/K. Therefore, the sensi-
tivity is also proportional to the logarithms of current density
(Fig. 6(b)). Therefore, when the sensor works at a specific cur-
rent (sub-threshold region), a relatively larger anode area helps

047701-3
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to realize a smaller current density and to obtain a higher sen-
sitivity.
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Fig. 8. (a) The sub-threshold region I–V –T characteristics of the verti-
cal GaN SBD with an anode radius of 85 µm. (b) The VF–T relationship
at different current levels.

Unlike the sub-threshold region, the voltages at a specific
current increase with the increasing temperature in the fully
turn-on region, showing a positive slope above the ZTC point
(Fig. 9(a)). At a current of 80 mA, the Sm values are deduced
to be 3.81 mV/K, 2.04 mV/K, and 1.46 mV/K for the SBD
with anode radii of 55 µm, 70 µm, and 85 µm, respectively.
However, the SR values contributed by the Rs are calculated to
be 4.56 mV/K, 2.97 mV/K, and 2.1 mV/K (Fig. 9(b)). There-
fore, the Sm is dominated by the SR in this region. We realize
that the series resistance degrades the temperature error and
linearity,[13] implying the fully turn-on region is not suitable
for temperature sensor application. It is worth noting that a
larger anode area helps to decrease the Rs and to improve the
sensing ability.
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Fig. 9. (a) The VF–T relationship in fully turn-on region for the SBD
with different anode radii. (b) The relationship between sensitivities
and current density.

4. Conclusions
In summary, we have fabricated vertical GaN SBD tem-

perature sensors using a thermally stable TiN anode. Based
on the I–V –T characteristics, the effect of anode area on the
sensitivity is investigated. It is demonstrated that the I–V –T
characteristics are comparable to each other for the diode with
different anode areas, presenting a ZTC point and a typical

barrier inhomogeneous behavior. In addition, the Rs increases
with temperature in slopes of 57.1 mΩ/K, 37.1 mΩ/K, and
26.3 mΩ/K for 50 µm, 70 µm, and 85 µm diodes, respectively.
When the voltage is below the ZTC bias point (sub-threshold
range), the forward voltage decreases linearly versus temper-
ature with a negative slope. The sensitivity deduced from the
absolute value of slope is dominated by the current density,
which follows the TE model. A large anode area helps to en-
hance the sensitivity at the same current level. When the volt-
age higher than the ZTC point (fully turn-on range), the for-
ward voltage increases linearly with temperature in a positive
slope. Then, the contribution of series resistance dominates
the sensitivity. Under this condition, a larger anode area helps
to decrease the series resistance and to improve the sensing
ability.
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