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We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how
to analytically solve the systems under some specific boundary conditions. Although the introduction of long-range hopping
terms prevents us from finding analytical solutions for arbitrary boundary parameters, we identify the existence of exact
solutions when the boundary parameters fulfill some constraint relations, which give the specific boundary conditions.
Our analytical results show that the wave functions take simple forms and are independent of hopping range, while the
eigenvalue spectra display rich model-dependent structures. Particularly, we find the existence of a special point coined
as pseudo-periodic boundary condition, for which the eigenvalues are the same as those of the periodical system when the
hopping parameters fulfill certain conditions, whereas the eigenstates display the non-Hermitian skin effect.
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1. Introduction
Recently, non-Hermitian systems have gained much at-

tention, both theoretically and experimentally.[1,2] In contrast
to the Hermitian systems, the non-Hermitian systems exhibit
many novel properties, such as complex spectrum structures,
rich topological classifications and non-Hermitian skin effect
(NHSE).[3–21] NHSE is characterized by the emergence of a
large number of bulk states accumulating on one of the open
boundaries accompanying with remarkably different spectra
from those under periodic boundary condition (PBC).[15–21]

As this counterintuitive phenomenon has no Hermitian cor-
respondence, the NHSE has attracted intensive studies in the
past years.[22–33]

The NHSE is essentially a boundary-sensitivity phe-
nomenon. The boundary effect for non-Hermitian systems
has been studied in Refs. [18,24,34–42]. To understand why
the change of boundary terms dramatically affects the proper-
ties of bulk states of non-Hermitian systems, with collabora-
tors we presented exact solutions for the one-dimensional non-
Hermitian models with generalized boundary conditions in a
recent work,[38] in which the size-dependent boundary effect
has been clarified from the perspective of exact solution. The
analytical results uncovered the existence of size-dependent
NHSE and gave quantitative description of the interplay ef-
fect of boundary hopping terms and lattice size. The size-
dependent NHSE was firstly observed by Li et al. in coupled
nonreciprocal chains,[43] and was generalized to open quan-
tum systems.[44] It was also observed in non-reciprocal chains

with impurity.[39]

In this paper, we generalize the exact solutions to the one-
dimensional non-Hermitian models with nonreciprocal (asym-
metric) long-range hopping under specific boundary condi-
tions. Although the introduction of long-distance hopping
terms hinders the finding of analytical solutions for arbitrary
boundary parameters, we identify the existence of exact so-
lutions when the boundary parameters fulfill some constraint
relations, which give the specific boundary conditions consid-
ered in the present work. Under the specific boundary con-
ditions, we exactly solve the eigenvalue equations and give
analytical results of eigenvalues and wavefunctions. Based on
our analytical results, we demonstrate the existence of size-
dependent NHSE and rich structures of the eigenvalue spectra.
Some concrete examples are also discussed.

2. Models and solutions
We start with the general 1D non-Hermitian model with

asymmetric long-distance hopping terms under generalized
boundary conditions, described by the Hamiltonian

Ĥ =
N− j

∑
n=1

{
p

∑
j=1

[
t jLĉ†

nĉn+ j
]
+

q

∑
j=1

[
t jRĉ†

n+ j ĉn

]}

+
j

∑
n=1

{
p

∑
j=1

[
δ jLĉ†

N+n− j ĉn

]
+

q

∑
j=1

[
δ jRĉ†

nĉN+n− j
]}

, (1)

where p is the farthest length of left hopping, q is the farthest
length of right hopping, and N is the number of lattice sites.
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A model with p = 2 and q = 2 is schematically displayed in
Fig. 1. While the PBC corresponds to δ jL = t jL ( j = 1, . . . , p)
and δ jR = t jR ( j = 1, . . . ,q), the open boundary condition
(OBC) corresponds to δ jL = δ jR = 0.
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Fig. 1. Schematic diagram of general 1D non-Hermitian model with p = 2
and q = 2.

For the system under the PBC, we can perform the fol-
lowing Fourier transformation:

ĉn =
1√
N ∑

k
eiknĉk,

ĉ†
n =

1√
N ∑

k
e−iknĉ†

k . (2)

Then the Hamiltonian becomes Ĥ = ∑k Ĥ(k), where

Ĥ(k) =
p

∑
j=1

[
t jLeik j ĉ†

k ĉk

]
+

q

∑
j=1

[
t jRe−ik j ĉ†

k ĉk

]
, (3)

with k = (2mπ/N) (m = 1,2, . . . ,N). Thus, the eigenvalue of
the general model under PBC is given by

E(k) =
p

∑
j=1

t jLeik j +
q

∑
j=1

t jRe−ik j. (4)

For the nonreciprocal lattice, we have t jL 6= t jR, and thus the
periodic boundary spectrum is complex.

For the general case with δ jL 6= t jL and δ jR 6= t jR, we
need to solve the eigenvalue equation for Eq. (1) in real space,
which consists of a series of bulk equations and boundary
equations. The bulk equations can be expressed as

q−1

∑
j=0

[
t(q− j)Rψs+ j

]
−Eψs+q +

p

∑
j=1

[
t jLψs+q+ j

]
= 0, (5)

with s = 1,2, . . . ,N− (q+ p). The boundary equations can be
expressed as

s−1

∑
j=1

[
t(s− j)Rψ j

]
−Eψs +

p

∑
j=1

[
t jLψs+ j

]
+

q−s

∑
j=0

[
δ(q− j)RψN+s−(q− j)

]
= 0, (6)

with s = 1,2, . . . ,q, and

s

∑
j=1

[
δ(p−s+ j)Lψ j

]
+

q−1

∑
j=0

[
t(q− j)RψN−p+s−(q− j)

]
−EψN−p+s +

p−s

∑
j=1

[
t jLψN−p+s+ j

]
= 0, (7)

with s = 1,2, . . . , p.
By comparing Eq. (6) with s = 1,2, . . . ,q and Eq. (5)

with s =−q+1,−(q−1)+1, . . . ,0, respectively, we find that
Eq. (6) is equivalent to the following boundary equations:

q−s

∑
j=0

[
t(q− j)Rψs−(q− j)

]
=

q−s

∑
j=0

[
δ(q− j)RψN+s−(q− j)

]
, (8)

with s = 1,2, . . . ,q. Similarly, by comparing Eq. (7) with
s = 1,2, . . . ,q and Eq. (5) with s = N− (q+ p)+ 1,N− (q+
p)+ 2, . . . ,N− q, respectively, we find that Eq. (7) is equiva-
lent to the following boundary equations:

s

∑
j=1

[
δ(p−s+ j)Lψ j

]
=

s

∑
j=1

[
t(p−s+ j)LψN+ j

]
, (9)

with s = 1,2, . . . , p. It is noticed that Eq. (5) with s =

−q+1,−(q−1)+1, . . . ,0 and s = N− (q+ p)+1,N− (q+
p) + 2, . . . ,N − q can be viewed as a continuation of bulk
equations, therefore the resulting wawefunctions of ψ j with
j =−q+1,−(q−1)+1, . . . ,0 and j = N+1,N+2, . . . ,N+ p
are auxiliary wavefunctions satisfying Eq. (5), just for the pur-
pose of simplifying the calculation.

Due to spatial translational property from bulk equations,
we can set the ansatz of wave function Ψi which satisfies the
bulk equations as follows:

Ψi = (zi,z2
i ,z

3
i , . . . ,z

N−1
i ,zN

i )
T. (10)

Inserting Eq. (10) into the bulk equation (5), we obtain the
expression of eigenvalue in terms of zi as

E =
p

∑
j=1

t jLz j
i +

q

∑
j=1

t jRz− j
i . (11)

For a given E, there are q+ p solutions zi (z1,z2, . . . ,zq+p).
Then it follows that the superposition of p+ q linearly inde-
pendent solutions is also the solution of Eq. (5) corresponding
to the same eigenvalue, i.e.,

Ψ = c1Ψ1 + c2Ψ2 + · · ·+ cq+pΨq+p

= (ψ1,ψ2, . . . ,ψN)
T, (12)

where

ψn =
q+p

∑
i=1

(cizn
i ) = c1zn

1 + c2zn
2 + · · ·+ cq+pzn

q+p, (13)

with n = 1,2, . . . ,N.
To solve the eigenequation HΨ = EΨ , the general ansatz

of wave function should also fulfill the boundary conditions.
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By inserting the expression of Ψ into Eqs. (8) and (9), the
boundary equations can be represented as

HB(c1, . . . ,cq,cq+1, . . . ,cq+p)
T = 0. (14)

The HB is the boundary matrix given by

F1(z1) · · · F1(zq) F1(zq+1) · · · F1(zq+p)
...

...
...

...
...

...
Fq(z1) · · · Fq(zq) Fq(zq+1) · · · Fq(zq+p)

Fq+1(z1) · · · Fq+1(zq) Fq+1(zq+1) · · · Fq+1(zq+p)
...

...
...

...
...

...
Fq+p(z1) · · · Fq+p(zq) Fq+p(zq+1) · · · Fq+p(zq+p)


,

where

Fs(zi) =
q−s

∑
j=0

[
t(q− j)R−δ(q− j)RzN

i
]

zs−(q− j)
i ,

with s = 1, . . . ,q and

Fq+s(zi) =
s

∑
j=1

[
δ(p−s+ j)L− t(p−s+ j)LzN

i
]

z j
i ,

with s = 1, . . . , p and i = 1, . . . ,q+ p. In the above calculation,
the auxiliary wavefunctions defined as ψ j = ∑

q+p
i=1 (ciz

j
i ) =

c1z j
1 + c2z j

2 + · · ·+ cq+pz j
q+p with j = −q + 1,−(q− 1) +

1, . . . ,0 and j = N + 1,N + 2, . . . ,N + p are used. Alterna-
tively, Eq. (14) can also be obtained by inserting the expres-
sion of Ψ into Eqs. (6) and (7) in combination with Eq. (11).
The nontrivial solutions for (c1,c2, . . . ,cq+p) mean that c1 =

0,c2 = 0, . . ., and cq+p = 0 cannot be satisfied simultane-
ously. The condition for the existence of nontrivial solutions
for (c1,c2, . . . ,cq+p) is determined by

det[HB] = 0, (15)

which is usually too complicated to be precisely solved for
the general case. For convenience, we shall divide the solu-
tions into two cases: one is that the number of ci (6= 0, i =
1, . . . ,q+ p) is 1, and the other is that the number of ci (6= 0)
is greater than 1 and less than or equal to q+ p. In general, the
second case is hard to be analytically solved. An exception is
the case of p = q = 1, which was exactly solved for arbitrary
boundary parameters.[38]

The solutions of zi for the first case (i.e., there is only
one nonzero ci and for convenience we denote it as c1) can be
easily obtained by applying a simplified method, which is the
situation studied in this paper. In this case, the eigenfunction
is composed of only one solution, i.e., |Ψ〉 = c1|Ψ1〉, and the
boundary equation HB(c1, . . . ,0)T = 0 requires c1 6= 0,c2 =

0, . . . , and cq+p = 0. Thus, Eq. (14) gives rise to

F1(z1) = · · ·= Fq(z1) = Fq+1(z1) = · · ·= Fq+p(z1) = 0, (16)

i.e., the following equation should be satisfied simultaneously:

q−s

∑
j=0

[
t(q− j)R−δ(q− j)RzN

1
]

zs−(q− j)
1 = 0, (17)

with s = 1,2, . . . ,q and
s

∑
j=1

[
δ(p−s+ j)L− t(p−s+ j)LzN

1
]

z j
1 = 0, (18)

with s = 1,2, . . . , p.
From Eq. (17) with s = q, we can obtain the solution of

z1 as

z1 = N
√

µei 2mπ
N , (19)

with

µ =
tqR

δqR
, (20)

and m = 1, . . . ,N. Then we insert Eqs. (19) and (20) into
Eq. (17) with s = q−1,q−2, . . . ,1 successively, and have

t(q−1)R

δ(q−1)R
= · · ·= t2R

δ2R
=

t1R

δ1R
= µ. (21)

Next, we insert Eq. (19) into Eq. (18) with s = 1, and get

δpL

tpL
= µ. (22)

Then we insert Eqs. (19) and (22) into Eq. (18) with s =

1,2, . . . , p−1 successively, and have

δ(p−1)L

t(p−1)L
= · · ·= δ2L

t2L
=

δ1L

t1L
= µ. (23)

Combining Eqs. (20)–(23) together, we have

t1R

δ1R
. . .=

tqR

δqR
=

δ1L

t1L
= · · ·=

δpL

tpL
= µ, (24)

which is the specific boundary condition corresponding to the
first case. As long as the specific boundary condition Eq. (24)
is fulfilled, the solution of z1 is given by Eq. (19). We note that
µ = 1 corresponds to the periodic boundary condition. While
we have always |z1| = 1 under the PBC, for the general case
with µ 6= 1, |z1|= N

√
µ is not equal to 1.

Inserting Eq. (19) into Eqs. (11) and (12), we obtain the
enigenvalues and eigenfunctions for the general model under
the specific boundary condition as

E =
p

∑
j=1

t jL( N
√

µeiθ ) j +
q

∑
j=1

t jR( N
√

µeiθ )− j, (25)

Ψ =

(
N
√

µeiθ ,
(

N
√

µeiθ
)2

, . . . ,
(

N
√

µeiθ
)N
)T

, (26)

where θ = (2mπ/N). When µ = 1, Eq. (25) is identical to
Eq. (4), and the eigenstates are all extended states, correspond-
ing to PBC. The case of µ = eiφ with φ ∈ (0,2π) corresponds
to a twist boundary condition by shifting the momentum by a
twist angle φ/N.
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3. Results and discussion
From the expression of wavefunction given by Eq. (26),

we see that the distribution of wavefunction is only relevant
to the value of µ , but is irrelevant to the values of t jL and t jR

as long as the specific boundary condition is fulfilled. This
means that systems with very different spectrum structures
may have the same wavefunctions. When |µ| 6= 1, Eq. (26)
suggests that non-Hermitian skin effect occurs as the distri-
butions of wavefunctions decay exponentially from the left or
right boundary. To see it clearly, in Fig. 2(a) we plot the distri-
butions of wavefunctions for various systems fulfilled the spe-
cific boundary condition with µ = 0.2. While the NHSE is dis-
tinct for small size systems, it becomes less distinct for large
size systems as the wavefunctions approach extended states
due to |z1| = N

√
µ 7→ 1 when N → ∞.[38] Figures 2(b)–2(d)

display the spectra for different systems with the same size
N = 60. Although they display quite different spectrum struc-
tures, their wavefunctions are identical as shown in Fig. 2(a).

Re(E)

-0.2

0

0.2

Im
(E
)

Site

0

0.02

0.04

0.06

Re(E)

-2

0

2

Im
(E
)

Re(E)

-0.5

0

0.5

Im
(E
)

(a) (b)

(d)(c)

0 20 40 60

-2 0 2

-2 0 2

-2 0 2 4

|ψ
|2

Fig. 2. (a) The profile of all eigenstates for different models in (b)–(d). (b)
Energy spectra for general model with p = 1, q = 1, t1L = 1, and t1R = 0.85.
(c) Energy spectra for general model with p = 2, q = 1, t1L = 1, t1R = 0.85,
and t2L = 1.2. (d) Energy spectra for general model with p= 2, q= 2, t1L = 1,
t1R = 0.85, t2L = 0.2, and t2R = 0.4. The boundary hopping parameters are
determined by the specific boundary condition Eq. (24). Common parame-
ters: N = 60 and µ = 0.2.

Next we shall discuss some special cases and display how
the boundary parameter µ affects the spectra and wavefunc-
tions.

3.1. Hatano–Nelson model under the specific boundary
condition

When p = 1 and q = 1, the general model reduces to the
Hatano–Nelson model[45,47] under the specific boundary con-
dition t1R/δ1R = δ1L/t1L = µ . The corresponding eigenvalues
from Eq. (25) with p = 1 and q = 1 can be rewritten as

E =

(
t1L

N
√

µ +
t1R
N
√

µ

)
cos(θ)

+i
(

t1L
N
√

µ− t1R
N
√

µ

)
sin(θ), (27)

with θ = (2mπ/N), and the eigenstates are given by Eq. (26).

There are some special situations in the specific boundary
conditions as follows:

When µ = 1 (PBC), the eigenvalues can be expressed as

E = (t1L + t1R)cos(θ)+ i(t1L− t1R)sin(θ), (28)

with θ = (2mπ/N).
When µ = (t1R/t1L)

N/2, the eigenvalues are given by

E = 2
√

t1Rt1L cos(θ), (29)

with θ = (2mπ/N). This special case is the so called modified
PBC studied in Ref. [27]. We note that the spectra are similar
to those under OBC, i.e.,

E = 2
√

t1Rt1L cos(θ), (30)

with θ = mπ/(N +1). The corresponding wave functions un-
der the modified PBC exhibit NHSE.

When µ = (t1R/t1L)
N , the eigenvalues are given by

E = (t1L + t1R)cos(θ)− i(t1L− t1R)sin(θ). (31)

Since the values θ appear always in pairs of (θ ,−θ) except
the case of θ = 0 and π (sin[0] = sin[π] = 0), we find that the
spectrum are the same as the spectrum under PBC, whereas the
corresponding wave functions exhibit NHSE. This special case
is the so called pseudo-PBC studied in Ref. [38]. This result is
a little counterintuitive since we can get a Bloch-like spectrum
even the translation invariance is broken by the boundary term.
A straightforward interpretation is that the Hamiltonian under
the pseudo-PBC ĤpPBC can be transformed to a Hamiltonian ˆ̃H
by carrying out a similar transformation, i.e., SĤpPBCS−1 = ˆ̃H,
where ˆ̃H is identical to the original Hatano–Nelson model un-
der PBC with t1L and t1R exchanged each other.

In Fig. 3, we plot the energy spectra and the profile of
eigenfunction with different µ for a fixed N. As shown in
Fig. 3(a), the energy spectra under pPBC (µ = rN) are the same
as those under PBC (µ = 1), and both are located at energy
spectra under PBC in the thermodynamic limit. In addition,
the energy spectra under mPBC are located at spectra under
OBC in the thermodynamic limit, which is consistent with our
prediction. For µ > 1, the wavefunctions are localized on the
left boundary, and the NHSE becomes more obvious as µ in-
crease as displayed in Fig. 3(b).

Re(E)

-0.2

0

0.2

Im
(E
)

Site

0

0.2

0.4(a) (b)

-2 0 2 5 10 15 20

µ=1
µ=0.6
µ=r

N

µ=r
2Ν

|ψ
|2

Fig. 3. Hatano–Nelson model under specific boundary conditions. (a) En-
ergy spectra with µ = 1, 0.6, rN and r2N described by the red circles, blue
circles, magenta circles and cyan circles, respectively. The green and black
line represents energy spectrum corresponding to OBC and PBC case in the
thermodynamic limit, respectively. (b) The profile of all eigenstates with
µ = 1, 0.6, rN and r2N . Common parameters: t1L = 1, t1R = 0.85, N = 20
and r =

√
t1R/t1L.
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3.2. Model with next-nearest-neighbor hopping

Now we consider the model with p = 2 and q = 2
under the specific boundary condition t2R/δ2R = t1R/δ1R =

δ1L/t1L = δ2L/t2L = µ . The corresponding eigenvalues from
Eq. (25) with p = 2 and q = 2 can be rewritten as

E =

[
t1L

N
√

µ +
t1R
N
√

µ

]
cos(θ)

+

[
t2L( N
√

µ)2 +
t2R

( N
√

µ)2

]
cos(2θ)

+i
[

t1L
N
√

µ− t1R
N
√

µ

]
sin(θ)

+i
[
(t2L( N

√
µ)2− t2R

( N
√

µ)2

]
sin(2θ), (32)

with θ = (2mπ/N), and the eigenstates are also given by
Eq. (26).

When we apply PBC, i.e., µ = 1, the eigenvalues can be
expressed as

E = (t2L + t2R)cos(2θ)+(t1L + t1R)cos(θ)

+i
[
(t2L− t2R)sin(2θ)+(t1L− t1R)sin(θ)

]
. (33)

Similar to the Hatano–Nelson model, we can also find the exis-
tence of a pseudo-PBC case for

√
(t1R/t1L) =

4
√
(t2R/t2L) = r.

When µ = r2N , the eigenvalues can be expressed as

E = (t2L + t2R)cos(2θ)+(t1L + t1R)cos(θ)

−i
[
(t2L− t2R)sin(2θ)+(t1L− t1R)sin(θ)

]
, (34)

which are the same as those under PBC, while the corre-
sponding wave functions exhibit NHSE. Therefore, this spe-
cial boundary condition is also named as the pseudo-PBC.

In Fig. 4, we plot the energy spectra and the profile of
eigenfunction with different µ for a fixed N. We can see that
the energy spectra under pPBC are the same as those under
PBC, while the wavefunctions exhibit NHSE obviously, which
is consistent with our prediction.

Re(E)

-4
-4

0

0 4

4

Im
(E
)

Site

0

0.5

1.0(b)(a)

0 10 20

|ψ
|2

µ=1
µ=0.2
µ=.

µ=r
2Ν

Fig. 4. General model with p = 2 and q = 2 under specific boundary condi-
tions. (a) Energy spectra with µ = 1, 0.2, 0.002 and r2N described by the red
circles, blue circles, magenta circles and cyan circles, respectively. The black
line represents energy spectrum corresponding to PBC case in the thermody-
namic limit. (b) The profile of all eigenstates with µ = 1, 0.2, 0.002 and r2N .
Common parameters: t1L = 1, t1R = 0.2, t2L = 2.5, t2R = 0.1, N = 20 and
r =

√
t1R/t1L.

3.3. General model with p = q

For the general model with p = q under the specific
boundary conditions tqR/δqR = · · · = t1R/δ1R = δ1L/t1L =

· · · = δpL/tpL = µ , the corresponding eigenvalues from
Eq. (25) with p = q can be rewritten as

E =
p

∑
j=1

[(
t jL( N
√

µ) j +
t jR(

N
√

µ
) j

)
cos( jθ)

]

+i
p

∑
j=1

[(
t jL( N
√

µ) j−
t jR

( N
√

µ) j

)
sin( jθ)

]
, (35)

with θ = (2mπ/N), and the eigenstates are given by Eq. (26).
When we apply PBC, i.e., µ = 1, the eigenvalues can be

expressed as

E =
p

∑
j=1

[
(t jL + t jR)cos( jθ)

]
+i

p

∑
j=1

[
(t jL− t jR)sin( jθ)

]
. (36)

Similar to the Hatano–Nelson model, we find the existence of
a pseudo-PBC case as long as the following constrained rela-
tions:

2 j
√

t jR/t jL = r, j = 1, . . . , p (37)

are fulfilled. When µ = r2N , the eigenvalues can be expressed
as

Table 1. Energy spectra and eigenfunctions for non-Hermitian chains with asymmetric long-range hopping under different boundary conditions.

Boundary condition Energy spectra Eigenfunctions

Generalized boundary condition E =
p
∑
j=1

t jLz j
i +

q
∑
j=1

t jRz− j
i Ψ = (ψ1,ψ2, . . . ,ψN)

T

(δ1R, . . . ,δqR,δ1L, . . . ,δpL) (no general solution for zi) (ψn = ∑
q+p
i=1 (cizn

i ))

Specific boundary condition
E =

p
∑
j=1

t jL( N
√

µe iθ ) j +
q
∑
j=1

t jR( N
√

µe iθ )− j Ψ =

(
N
√

µe iθ , . . . ,
(

N
√

µe iθ

)N
)T(

t1R

δ1R
= · · ·=

tqR

δqR
=

δ1L

t1L
= · · ·=

δpL

tpL
= µ

)
Periodic boundary condition

E =
p
∑
j=1

t jLe iθ j +
q
∑
j=1

t jRe− iθ j Ψ =
(

e iθ ,e i2θ , . . . ,e iNθ

)T

(µ = 1) (no non-Hermitian skin effect)

Pseudo-periodic boundary condition
E =

p
∑
j=1

[
(t jL + t jR)cos( jθ)

]
− i

p
∑
j=1

[
(t jL− t jR)sin( jθ)

] Ψ =

(
r2e iθ ,r4e i2θ , . . . ,

(
r2e iθ

)N
)T

for p = q case (µ = r2N , 2 j
√

t jR/t jL = r) (exhibit non-Hermitian skin effect)
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E =
p

∑
j=1

[
(t jL + t jR)cos( jθ)

]
−i

p

∑
j=1

[
(t jL− t jR)sin( jθ)

]
, (38)

which are the same as those under PBC, while the correspond-
ing wave functions exhibit NHSE. We also call this special
case as the pseudo-PBC.

In Table 1, we display the energy spectra and eigen-
functions for the non-Hermitian chains with asymmetric long-
range hopping under different boundary conditions. It is no-
ticed that pseudo-PBC exists only for the case of p = q, and
we have θ = (2mπ/N) (m = 1, . . . ,N) in the table.

4. Conclusion
In summary, we present exact solutions for general non-

reciprocal chains with long-distance hopping under specific
boundary conditions. Our analytical results indicate the exis-
tence of size-dependent NHSE. While the NHSE is distinct for
small size system, it becomes less discernable in the large size
limit. The wave functions are independent of hopping range,
whereas the eigenvalue spectra are model dependent and dis-
play rich structures. We also find the existence of a special
point called pseudo-PBC, for which the spectra are identical
to periodic spectra when the hopping parameters meet certain
conditions, while eigenstates display NHSE. Our exact solu-
tions provide examples that the boundary terms can dramat-
ically change the bulk properties of non-Hermitian systems.
While both asymmetric and long-range hopping are hard to
be realized in conventional quantum systems, electric circuits
provide a platform to simulate non-reciprocal non-Hermitian
systems,[48,49] which may be used to verify generalized bulk–
boundary correspondence and non-Hermitian skin effect. We
expect that more interesting solutions can be found and be sim-
ulated in electric circuits in future works.
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