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Continuous-time memristor (CM) has been widely used to generate chaotic oscillations. However, discrete memristor
(DM) has not been received adequate attention. Motivated by the cascade structure in electronic circuits, this paper intro-
duces a method to cascade discrete memristive maps for generating chaos and hyperchaos. For a discrete-memristor seed
map, it can be self-cascaded many times to get more parameters and complex structures, but with larger chaotic areas and
Lyapunov exponents. Comparisons of dynamic characteristics between the seed map and cascading maps are explored.
Meanwhile, numerical simulation results are verified by the hardware implementation.
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1. Introduction

Memristor, as the fourth basic circuit component, has
some special characteristics, such as inherent nonlinearity and
synaptic plasticity. According to the mathematical models,
memristors can be classified into extended memristor, generic
memristor, and ideal memristor.[1] Different memristors ex-
hibit different properties. Since the unique characteristics
of memristors, chaotic circuits,[2–4] neuromorphic comput-
ing systems[5–7] and other nonlinear systems[8,9] used to de-
scribe many problems in the fields of biology, physics, and
economics can be easily constructed by combining memris-
tors with other devices, which makes memristors be applied
broadly in a potential application prospect.

Chaotic and hyperchaotic behaviors can be found in
continuous and discrete nonlinear dynamical systems,[10–17]

which have many unique behaviors, including topologi-
cal transitivity, initial state sensitivity, and periodic orbit
density.[18–21] In order to obtain new chaotic systems with
rich repertoires of nonlinear behaviors, memristors were intro-
duced into some classical chaotic circuits.[22–25] In addition, a
cascade method of forming a series of new systems by cas-
cading two chaotic subsystems was proposed in our previous
papers.[26,27] Theoretical verification and experimental results
manifested that the Lyapunov exponents and chaotic space of
the new cascade chaotic system are much larger than those of
subsystems.

As we all know, systems can be classified into continu-
ous systems and discrete systems. Memristor is not an ex-
ception. Chua proposed that the concept of memristor can

be extended to a much more general class of dynamical sys-
tems called memristive systems (or generalized memristors),
and the memristor is only a special case of the systems.[28]

Compared with CM-based systems, DM-based systems can
be naturally realized by digital platforms such as FPGA (field
programmable gate array), DSP (digital signal processing),
and other microprocessor platforms. Besides, discrete sys-
tems can be utilized to appropriately describe many complex
problems in the real world. Hence, the DM and DM-based
systems may have many potential applications. Based on this
idea, some DMs have been proposed in recent years.[29–31] For
example, in Ref. [32], He et al. investigated a DM model
which are applied to the Hénon map. The bifurcation dia-
gram and Lyapunov exponents were studied. The simulation
results confirmed that the new DM-based map has more com-
plexities than the original Hénon map. What is more, Bao
et al. proposed a new discrete hyperchaotic map, which was
from a sampling switch-based memristor-based circuit.[33] In-
spired by this work, a general DM model and its mapping
model were reported in Ref. [34]. Based on the DM mapping
model, four different DM models and their maps were pro-
vided. The excellent performances indicated that two of the
DM mappings can generate hyperchaos and show the mem-
ristor initial-boosted behaviors. In addition to the ideal DM
model, a simple two-dimensional (2D) non-autonomous DM-
based hyperchaotic map was proposed by Deng, which shows
the bursting behaviors.[35] The above DM models and map-
pings all indicate that designing a chaotic discrete map with
more complexities and better performances is still a valuable
research topic.
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Encouraged by the above examples, the main contents
of this paper can be introduced as follows. The DM chaotic
map (DMCM) is first used as a seed map to construct new
cascade systems (CSs). To demonstrate the cascade method,
the constructions and signal flow of new CSs are given to de-
scribe the processes. Through the cascade operation, new CSs
own more system parameters and expanded chaos areas. Be-
sides, the maximum Lyapunov exponent is multiplied with the
cascade time increasing, which means better chaotic perfor-
mances. Detailed dynamic comparisons are explored to illus-
trate the improvements of CSs.

The rest of this paper is organized as follows. In Sec-
tion 2, a DM model and its chaotic map are proposed and
the corresponding i–v curves are given. In Section 3, the cas-
cade DMCMs are established, and the dynamic comparisons
between the seed map and CSs map are explored. In Section 4,
the proposed chaotic systems are implemented. Finally, con-
clusions of the paper are summarized in Section 5.

2. The DM model and the seed chaotic map
2.1. The DM model

In terms of the definition of CM,[1] an ideal charge-
controlled memristor can be defined as

v(t) = M(q)i(t),
dq(t)

dt
= i(t),

(1)

where v(t) and i(t) represent the voltage and input current
through the memristor, respectively. q(t) stands for a charge
variable and M(q) is the memristance function.

According to Euler difference method,[33] the CM in
Eq. (1) can be transformed into{

vn = M(qn)in,
qn+1 = qn + kin,

(2)

where vn, qn, and in represents the values of the n-th iteration
of v(t), q(t), and i(t).

The equation qn+1 = qn + kin can be deduced
q2 = q1 + ki1,
q3 = q2 + ki2,
. . . ,
qn = qn−1 + kin−1.

(3)

Therefore, qn can be derived as

qn = q1 + k
n−1

∑
j=1

i j. (4)

Thus, equation (1) can be converted into

vn = M
(

q1 + k
n−1

∑
j=1

i j

)
in. (5)

It can be found that the current state of the DM depends on all
of the past states.

In Ref. [36], a DM model was proposed as M(qn) =

q2
n− 1. Inspired by this model, we assume the DM model as

M(qn) = u(aq2
n + b), then its characteristics can be described

as follows: {
vn = u(aq2

n +b)in,
qn+1 = qn + kin,

(6)

where u, a, b, and k are system parameters.
Selecting parameters as a = 1.5, b = −1, u = 1.76, and

k = 1, different pinched hysteresis loops are given in Fig. 1 by
applying the discrete current source in = Im sin(ωn). For dif-
ferent amplitudes Im and frequencies ω , the hysteresis loops
are always pinched at the origin. The lobe area of the hystere-
sis loop decreases as the frequency ω increases. These features
are similar to those of CMs.
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(b)

(a)

Fig. 1. The pinched hysteresis loops of the DM by applying (a) in =
Im sin(0.01n) with Im = 0.01, 0.02 and 0.03; (b) in = 0.1sin(ωn) with
ω = 0.01, 0.02, 0.03.

2.2. The DM-based seed map

Based on the above-mentioned system (6), a DMCM was
reported in Ref. [36], which can be constructed as follows: de-
note in of the DM as the input for the n-th iteration map and
vn as the output and the next input of the iteration, then a two-
dimensional (2D) memristive map can be described as[36]{

xn+1 = u
(
aq2

n +b
)

xn,
qn+1 = qn + kxn.

(7)

The corresponding schematic structure is plotted as Fig. 2,
where we treat this 2D map as fx(xn, qn). This seed map
was treated as a normal chaotic map. Then the signal qn is
no longer regarded as the internal variable, but a signal that
can be obtained as output. When the parameters are set as
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a= 1.5, b=−1, k = 1, and u= 1.76 with initial value of (x(1),
q(1)) = (−0.1, 0.1), the numerical simulations of DMCM are
plotted in Fig. 3. In this case, the Lyapunov exponents are cal-
culated as LE1 = 0.2302 and LE2 = 0.0985. Thus, this map is
hyperchaotic which will be used as a seed map for the cascade.

DMin vn
DMCM

M↼qn↽

↼xn↪ qn↽ ↼xn+1↪ qn+1↽
fx↼xn↪ qn↽

Fig. 2. The schematic structure of DMCM.
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Fig. 3. Numerical simulations of DMCM (7): (a) iterative sequences of xn, qn, (b) phase portrait of xn–qn, (c) attractor of fx.

3. The cascade DMCMs and dynamic compar-
isons

3.1. The cascade method of DMCMs

Motivated by the cascade structure in electronic circuits,
the above-mentioned DMCM seed map can be utilized to cas-
cade to construct more complex systems. Any number of DM-
CMs can be connected in series as shown in Fig. 4 to construct
a new CS. Each DMCM sends its output to the latter until the
last DMCM feeds its output back to the first one. Some cas-
cade examples are given below.

3.2. Cascade with two DMCMs

To demonstrate the proposed method, the simplest CS can
be constructed from the seed map as shown in Fig. 5(a), where
two DMCMs fx(xn,qn) and fy(yn,q∗n) cascade with each other.

The first seed map sends the outputs (xn+1, qn+1) to the sec-
ond map as the input signal, while the second map feeds back
its outputs (yn+1,q∗n+1) to the input of the first. The detailed
signal flow diagram of CS is described as shown in Fig. 5(b).

the new CS
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...
xn+1

yn+1
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+
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( , )
x n n
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f z q
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( , )
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f z q 1 1
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+ +
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1 1
( , )
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DMCM1 DMCM2 DMCMn
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( , )
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1 1
( , )
n n
z q
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**
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1 1
( , )
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z q
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Fig. 4. The structure of multi-DMCM cascade.
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Fig. 5. The cascade of two DMCMs: (a) the structure chart and (b) the inner signal flow diagram.
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Based on the signal flow diagram, the CS with two DM-
CMs can be described as{

yn+1 = u2[a2(q∗n + kyn)
2 +b2][u1

(
a1q∗2n +b1

)
yn],

q∗n+1 = (q∗n + kyn)+ k[u1(a1q∗2n +b1)yn].
(8)

Obviously, the CS contains all parameters of its seed maps

leading to a more complex structure. Setting parameters as the
seed maps, there are a1 = a2 = 1.5, b1 = b2 =−1, k = 1, and
u1 = u2 = 1.76. When the initial conditions are selected as
(−0.1, 0.1) and (0.1, 0.1), the CS can generate chaotic oscilla-
tion and attractors as shown in Fig. 6.
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Fig. 6. Numerical simulations of CS (8): (a) iterative sequences of yn, (b) phase portrait of yn–q∗n, (c) attractor of fy.

3.3. Cascade with three DMCMs

Similarly, a CS with three DMCMs can be constructed
as shown in Fig. 7(a), in which the DMCMs are defined as
fx(xn,qn), fy(yn,q∗n), and fz(zn,q∗∗n ). The three DMCMs are

connected in series. Each DMCM sends its output to the lat-

ter and the last DMCM feeds its output back to the first one.

The corresponding internal signals of the CS are shown in

Fig. 7(b).
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Fig. 7. The cascade of three DMCMs: (a) the structure chart and (b) the inner signal flow diagram.

Then the CS can be obtained as

zn+1 = u3
(
a3
[
(q∗∗n + kzn)

+ k
(
u1
(
a1q∗∗2n +b1

)
zn
)]2

+b3
)

×u2[a2 (q∗∗n + kzn)
2 +b2]

[
u1
(
a1q∗∗2n +b1

)
zn
]
,

q∗∗n+1 = (q∗∗n + kzn)+ k
[
u1
(
a1q∗∗2n +b1

)
zn
]

+ ku2[a2 (q∗∗n + kzn)
2 +b2]

×
[
u1
(
a1q∗∗2n +b1

)
zn
]
.

(9)

Setting parameters as a1 = a2 = a3 = 1.5, b1 = b2 = b3 =−1,
k = 1, and u1 = u2 = u3 = 1.76, the new CS also keeps chaotic

state as shown in Fig. 8. Although the chaotic iterative tra-
jectories and phase diagram zn–q∗∗n are similarly with the seed
map (Figs. 3(a) and 3(b)), the system attractors are totally dif-
ferent, which means the change of the inner topology.

3.4. Dynamic comparisons

Chaos-cascade can significantly enlarge the maximum
Lyapunov exponent and enhance the complexity of dy-
namic characteristics, which had been reported in previous
researches.[26,27] In this case, since the seed DMCM is chaotic,
their CSs also may have better dynamic features.
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Taking a1 = 1.5, b1 = −1, and k = 1 in seed map (7),
with initial value of (−0.1, 0.1), the bifurcation diagram with
respect to u1 is shown in Fig. 9(a). The chaotic region of the
seed system is mainly distributed in u1 ∈ (1.65,1.85). For
CSs (8) and (9), since the cascade operation increases the sys-
tem parameters, the two CSs have more bifurcation variables
and parameter configurations. Let parameters be the set of

a1 = a2 = a3 = 1.5, b1 = b2 = b3 =−1, and k = 1. The corre-
sponding bifurcation graphs of u1, u2, and u3 are displayed in
Figs. 9(b)–9(f). Obviously, the more system parameters pro-
vide the possibility for flexible parameter configurations. With
appropriate parameters, the CSs have the larger chaotic areas
than the seed map. The more cascade times, the larger chaotic
areas of the system.
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Fig. 8. Numerical simulations of CS (9): (a) iterative sequences of zn and q∗∗n , (b) phase portrait of zn–q∗∗n , (c) attractor of fz.
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Fig. 9. The bifurcation diagrams of (a) seed map (7), (b) CS (8) with u2 = 1.76, (c) CS (8) with u1 = 1.86, (d) CS (9) with u2 = 1.76 and u3 = 1.83, (e) CS
(9) with u1 = 1.83 and u3 = 1.83, (f) CS (9) with u1 = 1.76 and u2 = 1.86.

As mentioned above, the more system parameters mean
the more parameter configurations, which may increase the
chaotic parameter space. The expanded chaotic areas can be
indicated from the dynamic maps, as shown in Figs. 10(a)–
10(c), where the system initial values are all set as (−0.1, 0.1).
In these dynamic maps, the states of systems can be divided
into five situations as the parameters change, namely fixed
point (yellow color), period (cyan color), chaos (blue color),
hyperchaos (black color), and divergence (red color). From
the bottom left corner of dynamic maps, the two CSs all start
from fixed point to periodic state via bifurcation, and jump
into chaotic or hyperchaotic state through period doubling bi-

furcation. Then the system orbits turn to periodic state again
from the reverse period-doubling bifurcation route, and finally
move infinity as the parameters increase. Some typical sys-
tem orbits are described in Fig. 10(d) for clearly displaying
the variation of system states.

Compared with CSs (8) and (9), the chaotic and hyper-
chaotic areas with respect to u1 and u2 obviously become
larger as the time of cascade increases. Because of cascade ef-
fect, the new parameter configuration u1–u3 emerges in CS (9).
This new configuration brings new chaotic parameter space as
shown in Fig. 10(c). Thus, new CSs own better performances
in terms of chaotic dynamics.
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Fig. 10. Dynamic maps with respect of (a) u1–u2 in CS (8), (b) u1–u2 in CS (9), (c) u1–u3 in CS (9), and the typical system orbits of (d) CS (8).

Except for the expanded chaos areas, the CSs also own
larger Lyapunov exponents. As shown in Fig. 11, the seed map
owns the maximum Lyapunov exponent as LEmax = 0.3244,
while it increases to LEmax = 0.6704 in CS (8) and LEmax =

0.9667 in CS (9), respectively. The maximum Lyapunov expo-

nent is multiplied compared with the seed map and increases
with the cascade times. Since a larger Lyapunov exponent in-
dicates more sensitive to changes of initial conditions, the CSs
obviously own better statistical performance for the chaos gen-
eration.
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Fig. 11. The Lyapunov exponent spectra of the (a) seed map (7), (b) CS (8), (c) CS (9).

4. Hardware implementation
The proposed DM and its CSs are further implemented by digital signal processor (DSP) platform, where the core processing

chip is TMS320C5509 and an 8-bit DA converter (TLC7528C) is used to convert numerical signals to analog voltage signals.

Im/.

Im/.

Im/.

(a) (b) ω=0.01

ω=0.02

ω=0.03

Fig. 12. The pinched hysteresis loops obtained by DSP: (a) in = Im sin(0.01n) with Im = 0.1, 0.2, and 0.3; (b) in = 0.1sin(ωn) with ω = 0.01, 0.02, and 0.03.
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(a) (b)

(c) (d)

Fig. 13. DM chaotic sequences implemented on DSP platform. (a) Hardware device, and chaotic sequences generated by (b) seed map (7), (c)
CS (8), (d) CS (9).

For different values of Im and ω , the corresponding
pinched hysteresis loops of the DM are obtained by the os-
cilloscope BSO-X3034A as shown in Figs. 12(a) and 12(b),
respectively. These experimental results are consistent with
the numerical simulations in shown Fig. 1.

Since the proposed DMCM and CSs are discrete systems,
they can be naturally realized by digital platforms. Set param-
eters as a1 = a2 = a3 = 1.5, b1 = b2 = b3 = −1, u1 = u2 =

u3 = 1.76, and k = 1. The seed map (7), CSs (8) and (9) can
generate chaotic sequences in the range of (−1.6, 1.6). These
sequences need to be converted and scaled up to the range of
(0, 255) to adapt the 8-bit DA converter. The final experi-
mental device and results are displayed in Fig. 13. It can be
concluded that the generated chaotic sequences prove the fea-
sibility of hardware implementation of DM chaotic maps.

5. Conclusion
In this paper, motivated by the cascade structure in elec-

tronic circuits, a DMCM is used as a seed map to construct
CSs. Any number of the seed map can be connected in se-
ries to design new CSs. Compared with the seed map, these
new CSs have more parameters and extended chaotic param-
eter space. As the times of cascade increases, the maximum
Lyapunov exponent of CSs also significantly increases. Fi-
nally, the proposed systems are implemented on DSP platform.
The experimental results indicate these new CSs can be used to
generate pseudo-random sequences and applied to encryption
fields.
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