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A five-value memristor model is proposed, it is proved that the model has a typical hysteresis loop by analyzing the
relationship between voltage and current. Then, based on the classical Liu–Chen system, a new memristor-based four-
dimensional (4D) chaotic system is designed by using the five-value memristor. The trajectory phase diagram, Poincare
mapping, bifurcation diagram, and Lyapunov exponent spectrum are drawn by numerical simulation. It is found that, in
addition to the general chaos characteristics, the system has some special phenomena, such as hidden homogenous multi-
stabilities, hidden heterogeneous multistabilities, and hidden super-multistabilities. Finally, according to the dimensionless
equation of the system, the circuit model of the system is built and simulated. The results are consistent with the numerical
simulation results, which proves the physical realizability of the five-value memristor-based chaotic system proposed in this
paper.

Keywords: five-valued memristor, chaotic system, hidden attractor, multistability

PACS: 05.45.–a, 05.45.Pq DOI: 10.1088/1674-1056/ac1e13

1. Introduction

In 1971, professor Chua first proposed the concept
of memristor and confirmed that it is the fourth basic
circuit element used to describe the relationship between
charge and magnetic flux except resistance, capacitance, and
inductance.[1] In 1976, professor Chua further extended the
concept of ideal memristor to the dynamic system of general-
ized memristor, namely memristor system.[2] However, due to
the incomplete preparation technology at that time, it is dif-
ficult to make the real memristor, resulting in the following
quite a long time, the related research on memristor has not
been well developed. Until 2008, HP Lab confirmed the sci-
entific prediction of 37 years ago to the world, and realized
the physical model of the world’s first memristor using tita-
nium dioxide material,[3] which confirmed its physical realiz-
ability, and promoted the development process of world elec-
tronic science and technology. At the same time, many math-
ematical models with memristor characteristics have been
reported, such as piecewise linear memristor,[1,4] quadratic
nonlinear memristor,[5,6] and cubic nonlinear memristor.[7,8]

These memristor models have simple structure and obvious
memristor characteristics, which are suitable for the applica-
tion and research of memristor in various oscillation circuits.

Memristor has potential application value in many fields,
such as logic circuit,[9] neural network,[10] nonvolatile mem-
ristor memory,[11] and information security,[12] because of its

unique nonlinear characteristics and easy to combine with os-
cillation circuits to produce complex and changeable chaotic
signals. The design of new chaotic circuit based on memris-
tor are also the current research hotspot. In Ref. [4], Itoh and
Chua designed a Chua’s chaotic circuit based on memristor by
replacing the nonlinear resistance in Chua’s circuit with bro-
ken line memristor, whose dynamic behavior becomes more
complex. In Ref. [13], Mutthuswamy designed a new piece-
wise linear memristor model and replaced the nonlinear re-
sistance in Chua’s chaotic circuit to obtain a memristor-based
chaotic system, which can produce double scroll attractors.
In Ref. [14], Xi proposed piecewise linear, quadratic nonlin-
ear, cubic nonlinear and quartic nonlinear memristors-based
fractional-order Lorenz systems, and intermittent chaos was
observed. In Ref. [15], Bao proposed an inductance-free mem-
ristor circuit which is linearly coupled by an active band-pass
filter, a shunt memristor, and a capacitor filter. Its stability is
closely related to the initial value of memristor, and it shows
extreme multistability.

With the further study of memristor theory and memris-
tor chaotic circuit, more and more scholars pay attention to ex-
plore new memristor chaotic systems with special dynamic be-
havior. In Ref. [16], Wang proposed a memristor chaotic sys-
tem with infinite equilibrium points, which can produce a huge
and complex basin of attraction. In Ref. [17], Zhou proposed
a new three-dimensional (3D) chaotic system with hidden dy-
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namic behavior, which can generate a variety of different types
of hidden coexisting attractors, and implemented the system
using DSP platform. In Ref. [18], Zhang introduced a multi-
scroll hyperchaotic system with hidden attractors based on jerk
system, which has infinite number of equilibrium points and
the number of scroll is controllable. In Ref. [19], Deng pro-
posed a hidden attractor chaotic system with a stable equilib-
rium point, which can produce four-scroll attractors, single-
scroll attractors, and attractors coexisting with the period and
quasi period. In Ref. [20], Yan proposed a memristor-based
fractional-order hyperchaotic system, the coexisting hidden at-
tractors are observed with different initial conditions and the
hidden dynamic characteristics of the system are verified by
using the SampEn complexity. In Ref. [21], a new fractional-
order chaotic system is proposed based on the Adomian de-
composition method, three characteristic initial offset boost-
ing behaviors were observed by varying the initial conditions
of the system and the digital circuit was implemented on a
DSP platform.

Inspired by Refs. [22,23], this paper proposes a five-value
memristor model and design a new chaotic system based on
the model. However, different from Ref. [22], the five-valued
memristor has more segmented characteristics, and the mem-
ductance function becomes more complex. Compared with the
memristor chaotic system introduced in the reference, the sys-
tem in this paper has more abundant dynamic characteristics,
such as multistabilities and super-multistabilities. The chaotic
system introduced in Ref. [23] has rich dynamic behaviors, but
it is not extended to hidden attractors and transient chaos, and
the number of scroll of attractor is at most 2. The system in-
troduced in this paper not only produces 1-scroll and 2-scroll,
but also generates 4-scroll attractors.

The paper is organized as follows. In Section 2, a flux-
controlled five-value piecewise linear memristor model is pro-
posed, and the hysteresis loop characteristics of the model are
simulated. In Section 3, based on the classical Liu–Chen sys-
tem, a new chaotic system with hidden attractors is designed
by using the five-valued memristor, and the dynamic behav-
ior of the new system is analyzed in detail. In Section 4, the
circuit of the memristor chaotic system is designed and simu-
lated, and the results are in good agreement with the numerical
analysis. Finally, the work of this paper is summarized in the
last section.

2. Flux-controlled five-valued memristor
Different from the classical binary memristor, the mem-

ristor model proposed in this section has five different memris-
tor states and is extremely sensitive to the change of excitation

voltage frequency, which mathematical model is expressed as

q(ϕ)= 0.1 |ϕ +1|−0.2 |ϕ−1|+0.3 |ϕ +2|−0.4 |ϕ−2| , (1)

where q is charges, ϕ is magnetic flux. The derivative of
Eq. (1) is shown below:

i(t) = W (ϕ)v(t) = [0.1sgn(ϕ +1)−0.2sgn(ϕ−1)

+0.3sgn(ϕ +2)−0.4sgn(ϕ−2)]v(t), (2)

where dq/dt = i(t), dϕ/dt = v(t), sgn(·) is a symbolic func-
tion, the memductance function W (ϕ) of flux-controlled five-
valued memristor is shown as

W (ϕ) = dq/dϕ = 0.1sgn(ϕ +1)−0.2sgn(ϕ−1)

+0.3sgn(ϕ +2)−0.4sgn(ϕ−2), (3)

after sorting out, the relationship between memductance and
magnetic flux is obtained as follows:

W (ϕ) =


0.2, ϕ ≤−2,
0.8, −2 < ϕ ≤−1,
1.0, −1 < ϕ ≤ 1,
0.6, 1 < ϕ ≤ 2,
−0.2, 2 < ϕ.

(4)

The characteristic curve of the five-valued memristor de-
scribed by Eq. (1) on ϕ–q is shown in Fig. 1(a), which is
composed of five straight lines with different slopes. Equa-
tion (2) describes the volt–ampere relationship of the five-
valued memristor. The memductance relationship described
by Eq. (3) and equation (4) is shown in Fig. 1(b). Obvi-
ously, the memristor is controlled by its internal state variable
flux, and the corresponding memductance value in each state
is equal to the slope of the straight line segment in the ϕ–q
curve.

According to the general definition of memristor,[24,25]

the flux-controlled five-valued memristor model can be rep-
resented as

i =W (ϕ)v,
W (ϕ) = 0.1sgn(ϕ +1)−0.2sgn(ϕ−1)

+0.3sgn(ϕ +2)−0.4sgn(ϕ−2),
dϕ/dt = v,

(5)

where v is input voltage, i is output current.
Consider a single port network with only one five-valued

memristor described by Eq. (5). A sinusoidal voltage source
is applied to the network port as the excitation, and the math-
ematical expression is as follows:

v(t) =Vm sin(2π f t), (6)

where Vm is amplitude and f is frequency.
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Fig. 1. Characteristic curve and memductance relationship curve of five-valued memristor. (a) The ϕ–q characteristic curve, (b) the memductance
relationship curve.

Set amplitude Vm = 2 V, internal initial condition of
memristor ϕ0 =−3 Wb, and when the frequency f is 0.2 Hz,
0.5 Hz, and 1 Hz, the v–i characteristic curve is shown in
Fig. 2. Obviously, when a sinusoidal excitation is applied, the
characteristic curve of the memristor on the v–i plane is a hys-
teresis loop which is compressed at the origin. Meanwhile,
with the increase of frequency, the sidelobe area of hystere-
sis loop decreases monotonously and shrinks to a single value
function, which is consistent with the essential characteristic
of the memristor.[26]

Let f = 0.1 Hz, ϕ0 = −3 Wb, when the value of Vm is

1 V, 5 V, and 10 V, the v–i characteristic curve is shown in

Fig. 3. Let Vm = 2 V, f = 0.1 Hz, when the value of ϕ0 is

−2 Wb, 0 Wb, and 1.5 Wb, the v–i characteristic curve is

shown in Fig. 4. From the simulation results, it can be seen

that under the sinusoidal voltage excitation, regardless of the

excitation amplitude, frequency, and the internal initial condi-

tions of the memristor, it can show the characteristics of the

hysteresis loop at the origin in the v–i plane, which is the main

feature of the memristor different from other non-memristor

elements.
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3. Five-valued memristor-based chaotic system

In 2004, Liu–Chen proposed a pseudo four-wing chaotic
system, which can produce a pair of two-scroll coexisting at-
tractors with close position arrangement, and have good sym-
metry and rich dynamic behavior.[27,28] In this paper, a new
memristor-based 4D chaotic system is constructed by intro-
ducing a five-valued memristor, which mathematical model is
expressed as 

ẋ = ax− yz+dz− k,
ẏ =−by+xz,
ż =−cz+ xy+ exW (w) ,
ẇ = f x,

(7)

where a, b, c, d, e, f , k are system parameters, x, y, z, w are
state variables. Let ẋ = ẏ = ż = ẇ = 0, the equilibrium equa-
tion is obtained as

ax− yz+dz− k = 0,
−by+xz = 0,
−cz+ xy+ exW (w) = 0,
f x = 0.

(8)

When k = 0, equation (8) is solved and a linear solution
is obtained, so the system (7) has a linear equilibrium point, as
shown below:

O= {(x,y,z,w)|x = y = z = 0, w = ε}, (9)

where ε is an arbitrary constant. Therefore the system has
infinitely many equilibrium points. The jacobian matrix is ob-
tained by linearizing system (7) at the equilibrium point O, as

shown in the following formula:

J0 =


a 0 d 0
0 −b 0 0

eW (ε) 0 −c 0
f 0 0 0

 . (10)

According to Eq. (10), the characteristic equation can be fur-
ther obtained as

λ (λ +b) [(λ −a)(λ + c)−deW (ε)] = 0. (11)

By solving the above equation, the characteristic root of the
system is shown below:

λ1 = 0, λ2 =−b,

λ3 =
(a− c)−

√
(a+ c)2 +4deW (ε)

2
,

λ4 =
(a− c)+

√
(a+ c)2 +4deW (ε)

2
. (12)

Set system parameters a = 5, b = 10, c = 2, d = 0.1, e = 1,
f = 0.1 and k = 0.1, it is found that no matter what the value of
ε is, the eigenvalue λ4 is always greater than 0, so the system
is unstable at the equilibrium point set O.

When k 6= 0, by solving Eq. (8), it is easy to get x = y = 0,
dz = k by taking it into the third equation we get −ck/d = 0,
but the parameters c and k are all non-zero constants, obvi-
ously this is a contradiction Therefore, in the case of k 6= 0,
there is no solution to the equilibrium equation, so no equilib-
rium point exists in the system. According to the definition of
hidden attractors,[29] no matter what the value of parameter k
is, the system has hidden attractor generation.
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plot in x–z plane, (c) the 2D plot in y–z plane, (d) The 3D plot in x–y–z space.
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Let the initial values of the state variables be (1, 1, 1, 10).
In the limited simulation time, a hidden double scroll attrac-
tor is obtained, and its phase diagram is shown in Fig. 5. The
Lyapunov exponent LE1 = 1.40, LE2 = −0.003948, LE3 =

−0.06238, LE4 = −8.339, and Lyapunov dimension DL =

3.1609 are calculated. Obviously, the system (7) has a pos-
itive Lyapunov exponent and fractional dimension, which is
consistent with the Lyapunov exponent and dimension charac-
teristics of the chaotic system, and chaotic behavior will occur.

3.1. Dissipative analysis

The dissipativity of system (7) can be represented by

∇V =
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂ z

+
∂ ẇ
∂w

= a−b− c, (13)

when a, b, c satisfy a−b− c < 0, the system is dissipative.
Bring in the parameter a−b− c =−7, so the system (7)

satisfies the dissipative condition. Therefore, the phase space
of the system converges exponentially and the volume element
V0 shrinks to V0 e−(b+c−a)t at t time. If the time t approaches

infinity, the trajectories of the system will be compressed into
a set whose volume is close to zero, namely the trajectories are
infinitely close to the attractor region. The existence of chaotic
attractors is proved.

3.2. Initial value sensitivity

Let the initial value of the system (7) be (1, 1, 1, 10) with-
out external interference and (100000001, 1,1,10) with exter-
nal interference. Solve the system equations in the above two
cases and the simulation results are shown in Fig. 6. The blue
part in the figure shows no interference and the red part shows
interference. Obviously, although the added disturbance is
very weak, the time-domain waveform and phase diagram of
the system have undergone very obvious changes. Especially
in Fig. 6(a), it can be clearly seen that the time series with-
out interference and with interference almost coincide at the
beginning, but with the evolution of time, the two trajectories
are separated quickly, accompanied by strong aperiodicity and
pseudorandomness, and finally form two completely different
trajectories.
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Fig. 6. Sensitivity analysis of initial value. (a) The t–x sequence diagram, (b) the 3D plot in x–y–z space.
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Fig. 7. Poincare mapping with z = 10 section. (a) The 2D plot in plane x–y plane, (b) the 3D spatial structure.

3.3. Poincare mapping

Poincare mapping is a common method to analyze the dy-
namic system. The specific method is to select a cross section
of n− 1 dimension in the n-dimensional phase space of the
system, and analyze the motion law of the system by observ-
ing the intersection distribution of the evolution trajectory and

the cross section of the system. When there is a continuous
curve or a dense sheet point set, the system is chaotic. Select
the cross section as z = 10, and the corresponding Poincare
mapping is shown in Fig. 7(a). In order to have a more in-
tuitive feeling about the acquisition of Poincare mapping, fig-
ure 7(b) shows the 3D spatial structure of Poincare mapping.
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Obviously, there are a lot of dense points on the cross section,
which is consistent with the essential characteristics of chaos,
and further verifies the chaotic behavior of the system.

3.4. System parameter influence

The change of parameters will directly affect the dynamic
behavior of the system. In this section, the bifurcation diagram
and Lyapunov exponent spectrum are used to analyze the dy-
namic behavior with the change of parameters. Let the param-
eters a = 5, b = 10, c = 2, d = 0.1, e = 1, f = 0.1, the initial
value is (1, 1, 1, 10). We make the parameter k change in the
range of interval [−30, 30]. The first three Lyapunov exponent

spectra and bifurcation diagrams of state variable z are drawn,
as shown in Figs. 8(a) and 8(b), respectively. When the max-
imum Lyapunov exponent is greater than zero, the system is
chaotic. It can be seen from Fig. 8(b) that in the process of
parameter k changing, the system (7) appears to period dou-
bling bifurcation and reverse period doubling bifurcation, and
the path from period to chaos and from chaos to period is ob-
served. When the k values are 1, 8, 12, and 30, the projec-
tion of the motion trajectory of the system on the x–z plane is
shown in Fig. 9, and the result corresponds to the bifurcation
behavior of the system varying with k.

-30 -20 -10 0 10 20 30
k

-4

-3

-2

-1

0

1

2

L
y
a
p
u
n
o
v
 e

x
p
o
n
e
n
ts

(a) LE1

LE3

LE

-30 -20 -10 0 10 20 30

k

-60

-40

-20

0

20

40

60

z

(b)

Fig. 8. Lyapunov exponent spectrum and bifurcation diagram varying with k. (a) Lyapunov exponent spectrum, (b) bifurcation diagram.
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Fig. 9. Hidden attractor phase diagrams with different k values: (a) k = 1, (b) k = 8, (c) k = 12, (d) k = 30.

In 2004, Gottwald and Melbourne proposed a binary test
method[30] to test whether nonlinear systems have chaotic be-
havior, which is called 0–1 test method. The basic idea of this

method is to establish a random dynamic process for the data,
and to study the results of the scale evolution of the process
over time. If the trajectory of the system on the p–s plane is
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similar to the unbounded behavior of brownian motion, then
the system is chaotic. On the contrary, if the trajectory on the
plane is bounded, then the system is periodic. Let the parame-
ters a = 5, b = 10, c = 2, d = 0.1, e = 1, f = 0.1, k = 1, and
the initial values be (1, 1, 1, 10), and the 0–1 test results of the
system (7) on the p–s plane are shown in Fig. 10(a). Keeping
other parameters unchanged, let k = 30, the 0–1 test result of
the system is shown in Fig. 10(b). Obviously, the trajectories
shown in Fig. 10(a) are unbounded, and the trajectories shown
in Fig. 10(b) are bounded. The 0–1 test results correspond to
the simulation results of the attractor phase diagram, which
further shows that the parameter changes have an impact on
the dynamic behavior of the system.

20-40 ↩ 0
p

-40

-30

-20

-10

0

10

20

s

(b)

-200 ↩ 0 100
p

↩

↩

↩

↩

-100

0

100

s

(a)

Fig. 10. The 0–1 test results of system (7): (a) k = 1, (b) k = 30.

3.5. Hidden multistability-dependent on initial memristor
values

Let a = 5, b = 10, c = 2, d = 0.1, e = 1, f = 0.1, k = 0.1,
the initial value is (1, 1, 1, w(0)). When the initial value of
memristor w(0) changes within the range of [−30, 30], the
four Lyapunov exponent spectrums of the system (7) chang-
ing with w(0) are shown in Fig. 11(a), represented by blue,
red, green, and pink curves respectively. Obviously, the maxi-
mum Lyapunov exponent of the system is always positive, so
the system is always in a chaotic state under the correspond-
ing parameters and initial values, and it is inferred that the
system may have infinite hidden attractors. The bifurcation
diagram of state variable z changing with w(0) is shown in
Fig. 11(b), whose bifurcation trajectory changes correspond-
ing to Fig. 11(a).

When w(0) values are −5, 0, and 5, the system presents
three hidden coexisting attractors with different topologies,
which are represented by red, blue, and green trajectories re-
spectively, their phase diagrams are shown in Fig. 12. When
the w(0) value is 0, four scroll attractors appear in the system,
and when the w(0) value is −5 and 5, two double scroll at-
tractors with different structures appear in the system, which
indicates that the system (7) has hidden heterogeneous multi-
stabilities.
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Fig. 11. Lyapunov exponent spectrums and bifurcation diagram varying with
w(0): (a) Lyapunov exponent spectrum, (b) bifurcation diagram.

When w(0) values are −10, −20, and −30, the first kind
of hidden coexisting attractors with the same topology appear
in the system, which are represented by red, green, and pink
trajectories respectively, their phase diagrams are shown in
Fig. 13. When the w(0) values are 10, 20, and 30, the second
kind of hidden coexisting attractors with the same topological
structure appear in the system, which are represented by blue,
orange, and gray trajectories respectively, their phase diagrams
are shown in Fig. 14. Obviously, the topological structure of
attractors is the same, but the spatial positions are different, so
the system (7) has hidden homogenous multistabilities in these
two cases.

When w(0) values are −25, −15, −6, 0, 6, 15, 25, the
phase diagrams are shown in Fig. 15. In fact, the system can
produce more or even infinite hidden attractors by changing
the initial conditions of the memristor. Therefore, it is inferred
that the system (7) also has hidden super multistabilities.
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3.6. Hidden transient chaos and state transition behavior

Transient chaos refers to the special phenomenon that the
system is in a chaotic state for a period of time, but with the
evolution of time, it changes into another periodic or chaotic
state. In this section, the hidden transient chaos and state tran-
sition behavior of the system (7) depending on the initial con-
dition of memristor are discussed. Set the parameters a = 5,
b= 10, c= 2, d = 0.95, e= 1, f = 0.1, k = 0.1, the initial con-
dition is (0, −1, −5, w(0)), set the simulation time t = 1000 s,
and the step size is 0.01. When w(0) = 10, the time-domain
waveform of the state variable x is shown in Fig. 16(a). It can

be observed that the time-domain waveform changes from dis-
orderly to regular in the vicinity of t = 72 s, the system has a
state transition. In addition, the local waveforms near the state
transition are amplified for easy understanding. In t1 ∈ [0,72]
and t2 ∈ (72,1000] the x–z plane phase diagram of the motion
trajectory of the system is shown in Fig. 16(b). Obviously, the
attractor with chaotic characteristics appears in the short time
before t = 72 s, and the periodic limit cycle appears in a long
time after t = 72 s, which fully shows that the system has hid-
den transient chaos under the corresponding parameters and
initial conditions.
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Fig. 16. The t–x waveform and the x–z phase diagram when w(0) = 10, (a) t–x, (b) x–z.
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Fig. 17. The t–x waveform and the x–z phase diagram when w(0) = 100, (a) t–x, (b) x–z.
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Similarly, when w(0) = 100, the system has a state tran-
sition near t = 395 s. The time domain waveform and phase
diagram of state variable x are shown in Figs. 17(a) and 17(b),
the simulation results are similar to the former, but the ex-
istence time of the transient chaos is obviously prolonged.
When w(0) = 180, set the simulation time t = 1500 s, and
the time-domain waveform of the state variable x is shown in
Fig. 18(a), which is completely different from the former two
cases. At this time, near t = 608 s, the system turns to another
kind of chaos rather than period. The phase diagram trajectory
in the x–z plane is shown in Fig. 18(b). It can be seen that the
attractors before and after transfer are obviously different.

4. Circuit design and implementation

In order to further observe the chaotic attractor and verify
the correctness of the system, based on the previous numerical
analysis, the analog circuit of the system (7) is designed and
simulated in this section. In the simulation, the operational
amplifier, multiplier, resistance and capacitance are used, and
the complex dynamic behavior of the system is observed on

the analog oscilloscope. The input voltage of analog opera-
tional amplifiers is set to +15 V and 15 V, the gain of analog
multipliers is set to 1. In order to limit the dynamic range
of the state variable to the saturation voltage range of the el-
ements, we compress the values of the state variables x, y, z,
and w to 1/5 times of the original. The dimensionless equation
is 

RCẋ = ax−5yz+dz−0.2k,
RCẏ =−by+5xz,
RCż =−cz+5xy+ exW (5w) ,
RCẇ = f x,

(14)

where RC is the time scale transformation factor. The circuit
diagram of system (7) is shown in Fig. 19, and the circuit equa-
tion is as follows:

C1ẋ = vx/R1− vyvz/R2 + vz/R3− v0/Rk,
C2ẏ =−vy/R4+vxvz/R5,
C3ż =−vz/R6 + vxvy/R7 + vxW (vw),
C4ẇ = vx/R8,

(15)

where,vx, vy, vz, and vw correspond to the voltages of capaci-
tors C1, C2, C3, and C4, respectively.
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Fig. 19. Circuit diagram of chaotic system with five-valued memristor.

Comparing Eqs. (14) and (15), we get R1 = R/a, R2 =

R5 = R7 = R/5, R3 = R/d, R4 = R/b, R6 = R/c, R8 = R/ f ,
Rk = R/2k, C1 = C2 = C3 = C4 = C. Let R = 100 kΩ,
C = 10 nF, when the parameters of system (7) are a = 5,
b = 10, c = 2, d = 0.1, e = 1, f = 0.1, k = 0.1, the param-
eters of elements are obtained as

R1 = R2 = R5 = R7 = 20 kΩ, R3 = R8 = 1000 kΩ,

R4 = 10 kΩ, R6 = 50 kΩ, Rk = 500 kΩ,

R9 = R10 = R11 = R12 = 10 kΩ, v0 = 0.1 V. (16)

Adjust the parameters of the elements in the circuit, and
run the simulation to get the double scroll chaotic attractor as
shown in Fig. 20. In order to further observe the influence
of parameters on the dynamic behavior of the system, the re-
sistance values of the regulating Rk are 6.25 kΩ and 1.67 kΩ

respectively. The corresponding circuit simulation results are
shown in Figs. 21 and 22, which are obviously consistent with
the numerical simulation results of k = 8 and k = 30. The cor-
rectness and physical realizability of the chaotic system based
on five-valued memristor are verified.
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Fig. 20. Circuit simulation results of five-valued memristor-based chaotic system. (a) In the x–y space, (b) in the x–z space, (c) in the y–z space, (d) in
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5. Conclusion

In this paper, a five-value memristor model is proposed it
is proved that the model has a typical hysteresis loop by an-
alyzing the relationship between voltage and current. Then,
the model is introduced into Liu–Chen system and a new
memristor-based 4D chaotic system is designed. The dynamic
behaviors of the system are analyzed, such as dissipativity, ini-
tial value sensitivity and poincare mapping. The results show
that the system can generate hidden periodic limit cycles, hid-

den single scroll attractors, hidden double scroll attractors,
and hidden four scroll attractors. Meanwhile, the system also
shows extreme sensitivity to initial values of the state variable,
and has hidden multistabilities, hidden super-multistabilities,
and state transition behavior. Finally, the design and simula-
tion of the memristor-based chaotic circuit are completed, and
the results are consistent with the numerical simulation results.
This study shows that the five-valued memristor model is suit-
able for chaotic circuit design, which expands the realization

100506-11



Chin. Phys. B Vol. 30, No. 10 (2021) 100506

way of the memristor model and nonlinear system, and has
potential application value in information security and other
fields.
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