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TOPICAL REVIEW — Topological 2D materials
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The field of two-dimensional topological semimetals, which emerged at the intersection of two-dimensional materials
and topological materials, has been rapidly developing in recent years. In this article, we briefly review the progress in this
field. Our focus is on the basic concepts and notions, in order to convey a coherent overview of the field. Some material
examples are discussed to illustrate the concepts. We discuss the outstanding problems in the field that need to be addressed
in future research.
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1. Introduction
Two-dimensional (2D) materials and topological mate-

rials have been two most active research fields in the past
decade. The field of 2D materials was kicked off with the suc-
cessful realization of graphene in 2004.[1] Since then, many
new atomic-thick 2D materials have been achieved in experi-
ment, and much more have been predicted in theory. For ex-
ample, a 2D material database in 2019 documented more than
6000 monolayer materials that can in principle be realized.[2]

On the other hand, although the history of topological
states of matter can be traced back at least to the study of
quantum Hall effect in the 1980s,[3–5] interestingly, the field
truly flourished also around 2004, accompanying the birth of
graphene. In two consecutive works,[6,7] Kane and Mele pro-
posed the concept of 2D topological insulators (also known
as quantum spin Hall insulators), and suggested graphene as a
candidate material. The topological concepts were firstly dis-
cussed in insulators.[8–11] Later, in 2011, the proposal of Weyl
semimetal concept by Wan et al.[12] motivated extensive re-
search on topological semimetals (TSMs).[13–15] For this sub-
field, the research was initially on three-dimensional (3D) sys-
tems, but soon, it was extended to 2D and closely interacted
with the field of 2D materials.

In fact, in retrospect, graphene itself represents a good ex-
ample of a 2D TSM — the 2D Weyl semimetal, in the absence
of spin–orbit coupling (SOC). The key features of a TSM can
be illustrated using graphene. In the band structure of a TSM,
near Fermi level, there exist protected band degeneracy points.
In graphene, these are the linear nodal points at K and K′

points of the Brillouin zone (BZ). Because of these points,
the low-energy electron quasiparticles exhibit distinct features,

such as unusual dispersions, pseudospin structures, etc.[16] In
graphene, the low-energy electrons mimic 2D Weyl fermions
(In literature, they were also often called the Dirac fermions.
We will clarify these concepts later). Consequently, TSMs can
manifest exotic physical properties. Many remarkable proper-
ties of graphene, such as ultrahigh mobility, Klein tunneling
effect, and weak antilocalization, are tied with its topological
character.[16] Actually, the clean band structure and large lin-
ear dispersion window make graphene the best example of all
available TSM materials to date.

K‘K

(b) (c)(a) (c)

Fig. 1. (a) Lattice structure of graphene, consisting of a single sheet of car-
bon atoms arranged in a honeycomb lattice. (b) At Fermi level, graphene has
two linear Weyl points located at the corners K and K′ of the BZ. (c) The
Weyl-cone dispersion around a Weyl point.

Hence, we see that the two fields, TSMs and 2D mate-
rials, are intertwined from the very beginning. Over the past
ten years, many new 2D TSM phases have been proposed and
some of them have found realization in real 2D materials. Sit-
ting at the intersection of two fields, the rapid progress of 2D
TSMs gains impetus from both fields. Particularly, the high
controllability of 2D materials is a great advantage for funda-
mental research as well as practical applications.

In this article, we will review the recent progress on 2D
TSMs. Due to the enormous body of literature on this sub-
ject, we definitely cannot cover all the important topics in this
short review. We will try to focus on the basic concepts and
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notions to provide an overview of the field. And we apologize
in advance for possible omission of some relevant works.

This review is organized as following. In Section 2, we
introduce the different schemes for classifying TSM states and
present the standards for a good TSM material. In Sections 3
and 4, we discuss 2D nodal-point and nodal-line TSMs, re-
spectively, in nonmagnetic systems. We extend the discussion
to magnetic systems in Section 5. In Section 6, we review the
topological edge states in 2D TSMs. An outlook of the field is
presented in Section 7.

2. Classify 2D TSM states
The key feature of a TSM is the band degeneracy near

the Fermi level, so the schemes to classify TSMs are based on
properties of such degeneracy. Below, we lay out these prop-
erties.

Γ Γ

(a) (b)Nodal Point Nodal Line

Γ

(b)

Fig. 2. Classification based on dimensionality. (a) 0D nodal points. (b) 1D
nodal line.

Dimensionality This refers to the dimensionality of the
degeneracy. For 2D systems, there are two possibilities: the
band degeneracies may either form 0D nodal points or 1D
nodal lines. Correspondingly, we have nodal-point TSMs and
nodal-line TSMs. This is the primary classification scheme.

Number of degeneracy This tells how many bands are
degenerate at the same momentum and same energy. It is at
least twofold, which is also the mostly encountered case. In
the field of TSMs, twofold degeneracy is conventionally re-
ferred to as “Weyl”, while fourfold degeneracy is referred to
as “Dirac”. This naming stems from the analogy with Weyl
and Dirac fermions[17,18] in relativistic quantum field theory.

(a) (b)

Weyl Point Dirac Point

Fig. 3. Classification based on the number of degeneracy. (a) Weyl point,
which is twofold degenerate. (b) Dirac point, which is fourfold degenerate.

It should be noted that in many works on 2D materials,
the naming of “Dirac” may cover a much wider range, espe-
cially in graphene like systems[16,19] (and also 2D transition
metal dichalcogenides materials such as WTe2

[20]). For exam-
ple, the Fermi points in graphene are commonly called “Dirac”

in literature.[16] This usage is not exactly the one associated
with degeneracy: graphene is essentially a spinless system
(with electron spin a dummy degree of freedom), low-energy
electrons around a Fermi point are of a two-component form.
With later conceptual development, the meaning of “Weyl”
and “Dirac” also evolves. In the TSM field, it is now more
common to use “Weyl” and “Dirac” to just denote twofold and
fourfold degeneracies, respectively (see e.g., the discussion by
Young and Kane in Ref. [21]). We will follow this usage here.

Type of dispersion In the study of 3D Weyl semimetals,
a Weyl point is classified as type-I if the Weyl cone (formed
by the two crossing bands) is up-right along any momentum
direction around the point; and as type-II if this is not the case,
namely, in at least one direction, the cone is tipped over.[22,23]

The reason for this classification is that the two types corre-
spond to distinct Fermi surface topologies: The Fermi surface
around a type-I point consists of a single pocket and it may
shrink into a Fermi point if the Weyl point is exactly at the
Fermi energy; in contrast, around a type-II point, there are co-
existing electron and hole pockets, and the two pockets touch
at the Weyl point if the point is at the Fermi energy.

(a) (b)

kx kx
ky ky

EE

Type-I Type-II

Fig. 4. Two types of dispersion for a nodal point. (a) Type-I dispersion.
(b) Type-II dispersion.

The classification can be extended to nodal lines, as first
proposed by Li et al. in Ref. [24]. Besides type-I and type-
II nodal lines, there is a third possibility: the hybrid nodal
lines.[24] The different classes also have distinct Fermi surface
topologies, leading to unique physical properties.[24,25]

A recent review of this classification can be found in
Ref. [26]. Hence, we shall not elaborate further on this point.

Order of dispersion In most cases, degeneracies are
formed by linear crossing between bands. Nevertheless, with
the participation of certain crystal symmetries, the linear dis-
persion term around a degeneracy may be killed, which makes
the higher-order term to become the leading order. This order
is an important character, as it determines the scaling of den-
sity of states, pseudospin structure, topological charge, etc.

In 3D systems, higher-order nodal points have been ex-
tensively studied.[27–32] In recent works, higher-order nodal
lines have also been reported.[33,34] In 2D, higher-order lines
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unlikely appear , but higher-order points do exist. For
example, twofold nodal points with quadratic dispersion,
called double Weyl points, have been reported in several 2D
materials.[35–37]

(a) (b)

ΔE ~ k ΔE ~ k ²

Fig. 5. Order of dispersion for a nodal point. (a) Conventional linear disper-
sion. (b) Quadratic dispersion. ∆E is the energy splitting between the two
bands.

Other features Apart from the main schemes above,
there are other features that classification of 2D TSMs can be
based on. For example, nodal points can be classified based on
their locations. In Ref. [38] by Lu et al., 2D Weyl points lo-
cated on high-symmetry path or generic k points are referred to
as “unpinned”, as their counterparts at high-symmetry points
(like those in graphene) are pinned by symmetry and cannot
freely move.

A

B

Γ X

Y M

Fig. 6. Nodal points at high-symmetry points (green dots) are pinned. Nodal
points on high-symmetry paths (yellow dot) and at generic k point (red dot)
are unpinned.

This classification based on the location in the BZ is con-
nected (but not identical) to the concepts of accidental and es-
sential band degeneracies. “Essential” means the presence of
the degeneracy is guaranteed by symmetry, and it cannot be
removed unless the symmetry is broken. In contrast, the pres-
ence of accidental degeneracies further requires band inver-
sion, and they can be removed while preserving the symmetry.
Nodal points on high-symmetry paths or generic k points, such
as the unpinned points in Ref. [38], are typically accidental.

Nodal lines may also be classified according to their pat-
tern in the BZ. At single-particle level, the continuity of band
structure guarantees that nodal lines must form closed loops.
Hence, the terminologies of “nodal line” and “nodal loop” are
used interchangeably. Since the BZ has the topology of a torus
which is not simply connected, a loop in the BZ can be clas-
sified according to whether or not it can shrink into a point.
This classification scheme was first proposed in Ref. [24]. For

2D systems, a nodal loop can be characterized by two inte-
gers, each representing its number of winding along a direc-
tion in the BZ. This characterizes the difference between the
two loops shown in Fig. 7. The loop in Fig. 7(a), often called
a nodal ring and centered around a high-symmetry point, can
continuously shrink into a point (while preserving the symme-
try), but each individual loop in Fig. 7(b) cannot, because it
traverses the BZ once.

(a) (b)

Γ Γ

Fig. 7. Classification of nodal loops based on the topology in the BZ. (a) An
isolated nodal ring can continuously shrink into a point. (b) Each individual
nodal loop here cannot shrink into a point by itself, as it traverses the BZ.

Another important feature is regarding whether SOC is
considered in the system or not, because it fundamentally af-
fects the symmetry group representation (single vs. double
representations). When SOC is absent, as in materials with
light elements, bosonic and classical systems, the nodal points
and lines may be called “spinless”. In the presence of SOC,
the required symmetry condition for a degeneracy is generally
more stringent, so the adjective “spin–orbit” is often added to
the naming.

Related to spin, works in the field also stress whether a
TSM occurs in a magnetic system or not. This is because the
presence/absence of time reversal symmetry has fundamental
importance on the topological classification, and spin polariza-
tion in magnetic materials also impacts the physical properties.
For magnetic TSMs, the most interesting case is when the low-
energy window that contains the nodal points/lines belongs to
a single spin channel. Such states were known as the topolog-
ical half semimetal, i.e., simultaneously a half metal (for spin)
and a semimetal (for charge).

In the following sections, we shall further expose the con-
cepts mentioned above with some realistic material examples.
Regarding materials, we note that a good TSM material should
satisfy the following requirements.

• The target band degeneracy should be close to the Fermi
level, such that the nontrivial emergent fermions can
play an important role in physical properties of the ma-
terial.

• The low-energy band structure should be clean. The de-
sired case is when the low-energy window contains only
the target band degeneracy.

• The characteristic dispersion should dominate in a large
energy window. For example, for a (linear) Weyl point,
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it is desired that the linear dispersion dominates over a
large window around the Fermi level.

3. The 2D nodal-point TSM
In 2D, stable nodal points can only have twofold or four-

fold degeneracy, corresponding to Weyl and Dirac types. Be-
low, we shall discuss the different types separately.

Spinless Weyl point As mentioned, graphene is a 2D
Weyl TSM. Its conduction and valence bands cross linearly at
two Weyl points at K and K′ points. Around the Weyl points,
the electrons are described by the 2D Weyl model

Hτ = vF(τkxσx + kyσy), (1)

where vF is the Fermi velocity, τ =±1 labels K/K′ (known as
the valley index), and σ ’s are the Pauli matrices. The energy
and momentum here are measured from a Weyl point. Note
that σ is a pseudospin corresponding to the orbital degree of
freedom (in the simple picture, these are the two pz orbitals at
the two carbon atoms in a unit cell). Since the SOC is negli-
gible in carbon materials, the real spin is a dummy degree of
freedom here.

The two Weyl points have opposite “chirality” determined
by the sign of τ . Here, chirality means the sense of ro-
tation of the pseudospin of the valence band along a small
circle surrounding the point: one is clockwise whereas the
other is counterclockwise. When a gap ∆σz is opened by
breaking the inversion symmetry, this chirality leads to valley-
contrasting properties, like Berry curvatures and orbital mag-
netic moments, which form the basis for the existing paradigm
of valleytronics.[39–41]

The Weyl points in graphene are protected by multiple
symmetries. For instance, the point corresponds to a 2D irre-
ducible representation of the D3h little group at K/K′. Besides,
the protection also comes from the spacetime inversion sym-
metry PT . For a spinless system with PT , the Berry phase
along a closed path ℓ must be π quantized, which gives a Z2

valued 1D topological charge (also known as the first Stiefel–
Whitney number)

ν =
1
π

∮
ℓ
𝒜(𝑘) · d𝑘 mod 2, (2)

where 𝒜 is the Berry connection for the valence bands. Each
Weyl point in graphene carries a nontrivial ν = 1, hence it
is stable against PT -invariant perturbations. In addition, the
sublattice (or chiral) symmetry also gives a protection. The
sublattice symmetry S satisfies {S,H} = 0. It is preserved on
a bipartite lattice when the hopping occurs only between the
two sublattices. As a manifestation of the sublattice symmetry,
the energy spectrum is symmetric about E = 0. Of course, in
real materials, the spectra are never exactly symmetric. Never-
theless, for many cases, S still appears as a good symmetry in

the low-energy window, and this is the case for graphene. Un-
der S, the path ℓ has a Z valued topological charge νC, which
is just the ν in Eq. (2) without taking the modulus 2. Hence,
one Weyl point in graphene has charge νC =+1, whereas the
other has charge −1.

The Weyl electrons described in Eq. (1) endow graphene
with many remarkable properties. Especially, the topo-
logical charge ν (π Berry phase) directly leads to the
weak anti-localization effect and unconventional Landau level
structure.[16] More physical consequences can be found in the
review articles on graphene.[16]
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Fig. 8. Unpinned Weyl points in group-Va monolayers with the phospho-
rene structure. (a) The lattice structure. (b) The unit cell with four-atom
basis. (c) There are six Weyl points (red dots) in the BZ. Two are on high-
symmetry path Γ –X2. The other four are at generic k points. (d) Anisotropic
dispersion for a Weyl point D on the high-symmetry path. (e) Anisotropic
dispersion for a pair of fully unpinned Weyl points around F in (c). Figures
adapted with permission from Ref. [38].

Similar spinless Weyl points have been identified in sev-
eral other 2D materials, such as graphynes,[42] some 2D boron
allotropes,[43] germanene,[44] and group-Va monolayers with
the phosphorene structure.[38] It was noted that in some of
these examples, the Weyl points appear on the high-symmetry
path, like in β -graphyne,[42] germanene on Al(111),[44] and
strained monolayer Na2O.[37] Moreover, in strained phospho-
rene structures, Weyl points at generic k were reported.[38]

These are the unpinned nodal points we mentioned in Sec-
tion 2. Compared to the pinned ones, they have two important
differences. First, with symmetry-preserving perturbations,
the unpinned points can move in the BZ. For points on the
high-symmetry path, they can move along the path; for points
at generic k, they can freely move in the BZ. As a result, the
unpinned points may annihilate in pairs when they collide at
the same point. Second, due to the reduced symmetry at the
point, the dispersion around the point is anisotropic. For ex-
ample, an effective model for an unpinned Weyl point on a
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high-symmetry path along x may take the form of

H = wkx + vxkxσx + vykyσy. (3)

One notes that generally vx ̸= vy, and there is a tilt term wkx

which tilts the Weyl cone along x. For fully unpinned Weyl
points at generic k, the dispersion is even more anisotropic. A
model for such an example can be found in Ref. [38].
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Fig. 9. Some interesting effects for type-II dispersion. (a) Landau level
squeezing factor plotted versus tilt direction on a unit sphere. Upper: Type-I
point. Lower: Type-II point, in which the two red loops mark the critical an-
gle where the Landau levels collapse. (b) Semiclassical orbit has a change in
topology when going from type-I to type-II. (c) Schematic figure showing a
white/black hole horizon simulated at an interface between type-I and type-
II regions. (d) Analogue of Hawking radiation proposed in TSMs. (e)–(f)
Analogue of gravitational lensing effect. The white line indicates a quasi-
particle trajectory (geodesic) in a TSM under a non-uniform strain profile.
Figures adapted with permission from Refs. [45,46].

It should be noted that for unpinned Weyl points, the cone
is generally tilted, as in Eq. (3). When the tilt dominates the
dispersion, for Eq. (3) this refers to |w| > |vx|, the dispersion
becomes type-II. The type-II dispersion can manifest in effects
such as magnetic breakdown,[47] Landau level collapse,[45]

and magneto-optical response.[45,48,49] Due to the emergent
Lorentz symmetry, by realizing a spatially varying tilt term,
e.g., by lattice strain, one can simulate interesting effects from
general relativity, such as event horizons, gravitational lens,
and Hawking radiation, as proposed in Ref. [46].

Spin–orbit Weyl point When SOC must be considered,
the condition for a 2D Weyl TSM is more stringent. Since we

need twofold Weyl points near the Fermi level, the bands must
have spin splitting and the splitting should be large enough.
Otherwise, bands with different spins would coexist in the
low-energy window, and we cannot have a clean TSM band
structure. In nonmagnetic materials, the splitting comes purely
from SOC. In magnetic materials, the exchange field typically
plays the leading role in the splitting.

For nonmagnetic 2D materials, a general consideration is
that the inversion symmetry P must be broken. Otherwise,
each band is twofold degenerate due to the PT symmetry, so
that a nodal point must be at least fourfold degenerate. Un-
der this condition and with spin splitting from strong SOC,
one can expect that Weyl points should be ubiquitous at high-
symmetry points. Note that the time reversal invariant momen-
tum (TRIM) points automatically have the Kramers twofold
degeneracy. However, no good candidate 2D material of this
type has been identified so far.

Spin–orbit Weyl points may also appear on high-
symmetry lines. A possible mechanism was reported in
Ref. [21], where a pair of essential spin–orbit Weyl points are
enforced by T and a twofold screw rotation. The idea was
demonstrated in strained monolayer GaTeI,[50] but the mate-
rial is far from ideal.

For magnetic materials, since T is already broken, the
constraint on P can be relaxed. A large spin splitting can be
achieved in a ferromagnetic material with strong exchange in-
teraction. Perhaps the best example of spin–orbit Weyl points
so far is in the magnetic PtCl3 monolayer.[51] There, the Weyl
points are located at the Fermi level without other extraneous
bands and are fully spin-polarized. We will discuss more on
this material in Section 5.

Dirac point Dirac points are fourfold degenerate nodal
points. By definition, it can be regarded as consisting of
two superposing Weyl points with opposite chirality. In other
words, the effective model at a Dirac point should be 4×4 and
can be expressed as

HD = HW+⊕HW−, (4)

where HW± are 2 × 2 Weyl models with opposite chirality.
Clearly, the nodal point in graphene does not fulfill this def-
inition. When including spin, the original nodal point would
be gapped by SOC, although the gap is very small (∼ 1 µeV)
due to the weak SOC in graphene.[52,53]

Young and Kane[21] first proposed a mechanism for re-
alizing spin–orbit Dirac points in 2D. They showed that P,
T , and a nonsymmorphic symmetry such as twofold screw
axis or glide mirror can enforce essential Dirac points at high-
symmetry points of the BZ boundary. It was shown that for
2D TSMs of this type, there must be two or three Dirac points
in the BZ; single Dirac point is impossible.[21]
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(a) (b)

Fig. 10. (a) With P, T , and a twofold nonsymmorphic symmetry, a Dirac
point can be enforced at the BZ boundary. (b) A tight-binding model
which realizes three Dirac points in the BZ. Here, each band has an inher-
ent twofold degeneracy due to PT . Figures adapted with permission from
Ref. [21].

The first real 2D material hosting Dirac points was
predicted by Guan et al.[54] It was found that in mono-
layer HfGeTe-family materials, the nonsymmorphic symmetry
group enforces two Dirac points at X and Y points, as shown
in Fig. 11. An example Dirac model, obtained for the Dirac
point at X in monolayer HfGeTe, is given by[54]

H = vxkx(cosθ σz ⊗ τz + sinθ σx ⊗ τz)+ vykyσy ⊗ τz, (5)

where τ’s are also Pauli matrices and θ is a model parame-
ter. It was noted that monolayer HfGeTe has spin-helical edge
states [see Fig. 11(d)]. They are due to the fact that the metal-

lic system can be continuously evolved into a 2D quantum spin
Hall insulator by adjusting the local gaps. The system belongs
to the Z2 topological metal.[55]
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Fig. 11. The 2D Dirac points in monolayer HfGeTe. (a) Band structure
of ML-HfGeTe with SOC included. The red arrow indicates the spin–orbit
Dirac point. (b) Energy dispersions around the Dirac point at X , showing
anisotropic Dirac-cone spectrum. (c) Product of band parity eigenvalues at
the four TRIM points, indicating a nontrivial Z2 invariant. Hence, mono-
layer HfGeTe is also a 2D Z2 topological metal. (d) The edge spectrum
showing a pair of spin-helical edge bands, similar to those for 2D topolog-
ical insulators. They are due to the bulk Z2 invariant. Figures adapted with
permission from Ref. [54].

(a) (b)

(c) (d)

Fig. 12. Experimental detection of Dirac points in 2D α-bismuthene. (a) µ-ARPES iso-energy contours taken at different binding energies. The
locations of the Dirac points are marked by red arrows. (b) Calculated band structure. (c) 3D band representation of the ARPES result, compared
to (d) the calculated 3D band contour. Figures adapted with permission from Ref. [56].

The first experimental detection of Dirac points in 2D
was performed on α-bismuthene.[56] By using µ-ARPES tech-
niques, the location and the linear dispersion of the Dirac
points were directly imaged, which conformed with the first-
principles calculation result.

It should be noted that both monolayer HfGeTe and α-
bismuthene are not good-quality 2D Dirac TSMs. In α-
bismuthene, the Dirac point is away from the Fermi level.
In monolayer HfGeTe, the low-energy band structure is not
clean; it is a metal rather than a semimetal. Hence, it remains
a challenge to search for a suitable 2D Dirac TSM.

The original concept of a Dirac point requires each of the
two crossing bands has twofold degeneracy, as consistent with
the concept of Dirac fermions. In materials, this requirement
is usually fulfilled by the PT symmetry. If we relax this re-
quirement and define any fourfold points as Dirac, we could
have so-called birefringent Dirac points.[58–60] The naming is
from the analogy with optics: Here, the twofold degeneracy of
each band is lifted, so around each Dirac point there are two
equi-energy surfaces, which give rise to two refracted beams
for a given incident particle beam (see Fig. 13). In 3D materi-
als, the birefringent Dirac points have been discussed, e.g., in
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CaAgBi family materials[57] and 3D honeycomb carbon.[61] In
2D, Jin et al.[62] proposed that such point can be enforced by
T and two glide mirrors, and predicted its realization in mono-
layer SbSSn. Notably, due to the P breaking, there can be
nonzero Abelian Berry curvature around such a point, which
is impossible for PT -invariant systems.

Similar birefringent Dirac points have also been reported
in spinless 2D systems. Reference [63] listed three layer
groups that host such points, and a hypothetical phosphorous
2D structure was proposed, which hosts the point near the
Fermi level.

Dirac points can also exist in 2D magnetic materials. This
will be discussed later in Section 5.

(a) (b)

n p

n p

(c)

En
er

gy
 (e

V)

kx ky

Fig. 13. (a) Energy dispersion around a birefringent Dirac point. (b) Double
refraction occurs for an incident particle beam. (c) A n–p junction setup in
TSMs with birefringent Dirac point. Figures adapted with permission from
Ref. [57].

Double Weyl point Double Weyl points (or quadratic
Weyl points) are Weyl points with a quadratic band energy
splitting, namely,

∆E(𝑘) = E1(𝑘)−E2(𝑘)∼ k2, (6)

where ∆E is the energy splitting between the two bands. Note
that in AB-stacked bilayer graphene, the low-energy dispersion
is approximately quadratic at K and K′ points when taking into
account only the nearest-neighbor interlayer hopping.[16] Nev-
ertheless, the quadratic point is unstable when including more
hopping terms, which split it into four linear Weyl points (so-
called trigonal warping effect).

The first stable double Weyl point was reported in strained
blue phosphorene oxide, which is a spinless system.[35] As
shown in Fig. 14, the point occurs at Γ and is protected by the
D3d symmetry. The generic model for such a point is given by

H = Ak2 +B
[

0 k2
−

k2
+ 0

]
, (7)

where k± = kx ± iky, A and B are real model parameters.
The point has a Berry phase of 2π , which is trivial when

modulo 2π . Nevertheless, the double Weyl fermions do ex-
hibit distinct properties. For example, a universal optical ab-
sorbance was predicted in Ref. [35] that for low-frequency op-
tical excitations (< 0.5 eV for blue phosphorene oxide), the
absorbance A(ω) = πα ≃ 2.3% is a universal value. Here,
α = e2/(h̄c)≃ 1/137 is the fine-structure constant.
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Fig. 14. (a) Top and side views of monolayer blue phosphorene oxide.
(b) Electronic band structure for blue phosphorene oxide under 4% strain,
showing a double Weyl point at Fermi level. Figures adapted with permis-
sion from Ref. [35].
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Fig. 15. (a) Top and side views of monolayer Na2O. (b) Band structure of
monolayer Na2O at equilibrium state, showing a double Weyl point at Fermi
level. Figures adapted with permission from Ref. [37].

Later, double Weyl points were also found in monolayer
Mg2C[36] and monolayer Na2O and K2O.[37] For Mg2C and
K2O, the appearance of double Weyl points requires lattice
strain, whereas for Na2O, the point exists in the equilibrium
state. Therefore, monolayer Na2O seems to be a good plat-
form to explore the double Weyl fermions.

The double Weyl points reported so far are all spinless. It
is currently not clear whether such points can exist in systems
with SOC. This is an interesting question to be explored.

Other cases Here, we mention two other types of nodal
points in 2D discussed in literature: the semi-Dirac point and
the pseudospin-1 point. It should be noted that they are not sta-
ble, i.e., they are not symmetry protected and their existence
requires fine tuning of the system parameters.

The semi-Dirac point, which according to our naming
convention should be called a semi-Weyl point, was first re-
ported in certain VO2/TiO2 nano-structures.[64] It has linear
band splitting along one direction and quadratic splitting along
the other direction. A generic effective model is given by

H = vkxσz +
k2

y

2m
σx. (8)

As mentioned, such points are not protected. It in fact repre-
sents a critical state at the transition when two unpinned linear
Weyl points are merged and about to open a gap.
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Fig. 16. (a) Energy dispersion around a pseudospin-1 point. (b) Electronic
band structure for K2O at equilibrium state. Around the Fermi level, the
bands are very close to forming a pseudospin-1 point. Figures adapted with
permission from Refs. [35,37].

The pseudospin-1 point is a triply degenerate point. Its
spectrum consists of a Weyl cone and a flat band intersect-
ing the Weyl point, as shown in Fig. 16. It was first dis-
cussed in cold-atom systems and some molecular patterned
crystal surface.[65–67] The first 2D material example showing
this feature is the strained blue phosphorene oxide (which is
spinless).[35] It represents a critical state at a semiconductor–
semimetal transition. Its effective model is given by

H = v𝑘 ·𝑆, (9)

where 𝑆’s are two 3 × 3 purely imaginary Gell–Mann
matrices. Such points attracted interest, because the
pseudospin-1 fermions have remarkable effects, such as super-
Klein tunneling,[65,68] supercollimation,[69] and super An-
dreev reflection.[70] We will not elaborate on these effects here.
The interested readers may consult the listed references. The
pseudospin-1 point was later also reported in strained mono-
layer Mg2C,[36] monolayer Na2O and K2O.[37] It is noted that
monolayer K2O in its equilibrium state is very close to the crit-
ical state [see Fig. 16(b)], suggesting it as a good platform to
study pseudospin-1 fermions.

4. The 2D nodal-line TSM
Spinless Weyl line Weyl lines are common for 2D ma-

terials which preserve a horizontal mirror plane. This is be-
cause in such cases, each band have a definite parity un-
der mirror, and the crossing between two bands with differ-
ent parity will generically form a Weyl line in the 2D BZ.
These lines have been found in many material examples, such
as Hg3As2,[71] Ca2As,[72] PdS,[73] C9N4,[74] p-IVX2,[75] and
honeycomb borophene oxide.[76]

This type of lines are in a sense unpinned: they are not
restricted to high-symmetry paths and their shapes may be de-
formed under perturbation. As mentioned in Section 2, we
may characterize the topology of a loop in 2D BZ by two inte-
ger numbers, corresponding to the numbers of times the loop
traverses the BZ in the two directions.[24] Mathematically,
this characterization derives from the fundamental homotopy
group of the two torus π1(T2) = Z×Z. In this sense, a nodal
ring around a high-symmetry point [Fig. 7(a)] and a nodal loop

traversing the BZ [Fig. 7(b)] are distinct. Physically, this dis-
tinction manifests in the fact that under symmetry-preserving
perturbations, the former can continuously shrink to a point,
whereas the latter cannot (by itself); to make the shrinkage, the
latter one must do it with a partner. An example is shown in
the honeycomb borophene oxide.[76] As shown in Figs. 17(b)–
17(d), under strain which preserves the horizontal mirror, the
two loops in Fig. 17(b) can merge into a single ring (which
may then shrink to a point and annihilate).

a

b

B
O

(a) (b)

(d)(c)

Fig. 17. Nodal loop transformation in honeycomb borophene oxide. (a) Lat-
tice structure of honeycomb borophene oxide. Nodal-loop profile under
(b) 5% compressive strain, (c) 1.45% compressive strain, and (d) 5% ten-
sile strain along the a direction. In the process, a single ring splits into two
loops traversing the BZ. Figures adapted with permission from Ref. [76].
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Fig. 18. ARPES experiment on monolayer Cu2Si, which probes the mirror-
protected spinless Weyl lines in the band structure. Figures adapted with
permission from Ref. [77].

Experimentally, nodal lines in monolayer Cu2Si[77] and
CuSe[78] have been detected by ARPES measurement. The
nodal lines in these two examples belong to the mirror pro-
tected spinless Weyl lines.
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Fig. 19. (a) Lattice structure of monolayer ScTe. (b) Essential Weyl lines
exist at the entire BZ boundary (yellow). (c) Calculated band structure and
PDOS of monolayer ScTe in the absence of SOC. Figures adapted with per-
mission from Ref. [79].
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Another type of spinless Weyl lines are enforced by non-
symmorphic symmetries at high-symmetry paths of the BZ.
Consider a twofold screw rotation along x. It can be shown
that the combined operation (T Sx) satisfies

(T Sx)
2 =−1 (10)

along the kx = π path at the BZ boundary. It follows that
each band on this path must have a Kramers like twofold de-
generacy, corresponding to a Weyl line on this path. This
type of lines have been reported in monolayer ScTe-family
materials.[79] Notably, when there are two in-plane screw axes
Sx and Sy, the nodal line will form at the entire BZ boundary.
This is the case in monolayer ScTe, and can be viewed as a
kind of nodal cage. It was shown in Ref. [80] that its counter-
part in 3D can coexist with a single Weyl point in BZ, offering
a route to circumvent the no-go theorem.

Spin–orbit Weyl line The two types of Weyl lines dis-
cussed above also find counterparts in spin–orbit systems, be-
cause the corresponding symmetry protection works for both
cases.

For the first type, the mirror eigenvalue is still well de-
fined for each band. Hence a Weyl line protected by the hori-
zontal mirror symmetry can still be stabilized. To have a Weyl
line, the two bands that form the line should have sufficiently
large spin splitting. This also requires that the PT symmetry
must be broken.

For the second type, one notes that the symmetry rela-
tion in Eq. (10) remains valid for a spinful particle, because
although T 2 = −1 has a sign flip, (Sx)

2 also brings an extra

minus sign due to the 2π rotation of spin-1/2. As a result, the
twofold degeneracy persists on the kx = π path. And again,
it is necessary to have broken PT symmetry. Otherwise, the
kx = π would not correspond to a Weyl line but just one dou-
bly degenerate band. This analysis in fact parallels that for the
class-II nodal surfaces in 3D systems with SOC.[81]

It should be mentioned that under the first type, there is a
sub-type of essential spin–orbit Weyl lines. These lines are
protected and further enforced by a horizontal glide mirror
symmetry. And each point on the line corresponds to the neck
point of an hourglass type dispersion. The existence of such
lines was first noticed in Ref. [21], which is derived from the
spin–orbit Dirac points after breaking the inversion symme-
try. Wu et al.[50] systematically studied the symmetry condi-
tion and the topology of this type of lines. Figure 20 illustrate
the possible line profiles. Materials monolayer GaTeI[50] and
Bi/Cl-SiC(111)[82] were predicted to host such lines, but in
both examples, the lines are away from the Fermi level.

So far, a good candidate material with spin–orbit Weyl
lines is still lacking.

Dirac line In 2016, the possibility of a fourfold degen-
erate Dirac line was first proposed by Wieder and Kane[83]

in space group 55. Recently, trilayer Bi structure was also
identified as a candidate to host such Dirac lines.[84,85] It was
shown that with SOC, the symmetries P, T , a screw axis S2x

and a vertical glide mirror Gy can enforce a Dirac line on the
ky = π path at the BZ boundary. This Bi structure, called the
brick phase tri-atomic layer Bi(110), was successfully grown
on black phosphorous substrate in experiment.[85]
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Fig. 20. (a) Schematic figure showing the hourglass dispersion along a path connecting two TRIM points. (b)–(d) Possible patterns of spin–orbit
Weyl loops in the 2D BZ for the glide mirror {Mz| 1

2
1
2 }. (e)–(g) Possible patterns of spin–orbit Weyl loops for the glide mirror {Mz| 1

2 0}. Figures
adapted with permission from Ref. [50].

5. The 2D magnetic TSM

We arrange a separate section for discussing magnetic
TSMs, because the presence/absence of the T symmetry has
important impacts on topological classifications. The spatial
operations will also act on the magnetic moments which typ-
ically lowers the symmetry, and one has to deal with mag-
netic space groups. In addition, magnetic TSMs offer possibil-

ity to study the interplay between magnetism and topological

fermions. For example, the band topology may be controlled

by varying temperature across magnetic phase transitions or

by tuning the magnetization direction. From a practical point

of view, the most desired case is to have a topological half

semimetal, such that the topological fermions can be 100%

spin polarized, which will be useful for spintronics applica-
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tions. The terminology initially appeared in Ref. [44] for the
semihydrogenated germanene, where a double Weyl point at
Fermi level occurs in a single spin channel and the other chan-
nel is gapped.

To have stable magnetism in 2D materials, strong mag-
netic anisotropy is required to fight against the enhanced fluc-
tuations with reduced dimensionality. Typically, the magnetic
anisotropy is dominated by SOC effects. Hence, in the follow-
ing discussion, we will focus on the TSM states that are robust
under SOC.
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Fig. 21. (a) Band structure of ferromagnetic monolayer PtCl3 without SOC.
The red and blue bands are for spin-up and spin-down channels, respec-
tively. (b) Enlarged view of the band structure around the Weyl point. The
red solid (blue dashed) lines are for the bands with (without) SOC. (c) Two
Weyl points are located at K/K′ points without SOC (blue points), and they
are shifted along the x direction on the mirror-invariant line after considering
SOC (red points). Figures adapted with permission from Ref. [51].

Weyl point Similar to the nonmagnetic case, magnetic
Weyl points could exist at high-symmetry points, correspond-
ing to 2D irreducible representations of the little group; or
formed by crossing between two bands of different symme-
tries on high-symmetry paths. A good example is monolayer
PtCl3.[51] The system is ferromagnetic with in-plane magne-
tization direction. The magnetism preserves a vertical mirror,
and a pair of Weyl points are protected by this mirror symme-
try on the mirror-invariant path, robust under SOC, as shown
in Fig. 21. The advantages of the material are clear. Due to
electron filling, the Weyl points sit exactly at the Fermi en-
ergy, so that the Fermi surface is clean and consists of only
the two Weyl points. In addition, the low-energy bands be-
long to a single spin channel, while the other channel has a
gap ∼ 1 eV. Hence, the material is a good candidate of a Weyl
half semimetal.

Dirac point So far, Dirac points have been found in an-
tiferromagnetic 2D systems with PT symmetry. Here, PT
helps to enforce a double degeneracy for each band, and it
requires the magnetic ordering to be antiferromagnetic. The
possibility was first pointed out by Wang[86] and by Young
and Wieder.[87] Reference [87] proposed one sufficient condi-
tion for achieving magnetic Dirac points, which involves two
spatial symmetries and a special “nonsymmorphic” time rever-
sal symmetry T̃ = {T |𝑡}, with 𝑡 a fractional lattice translation.
The resulting Dirac point locates at a high-symmetry point and
it is possible to have a single Dirac point in BZ. Meanwhile,
Ref. [86] gave a general analysis for Dirac points in 2D sys-
tems with PT symmetry. It further identified possible pairs of

Dirac points on high-symmetry paths, protected by nonsym-
morphic symmetries.

A material example, the FeSe monolayer, was proposed
in Ref. [87]. However, its Dirac point is below the Fermi level
by more than 0.4 eV, and the energy splitting between the two
crossing bands is very small along one direction. Another
example is monolayer TaCoTe2.[88] Both type-I and type-II
Dirac points were found in the antiferromagnetic state, de-
pending on the Néel vector direction. Nevertheless, these
points are located around −0.25 eV in the valence band. Cur-
rently, we do not have a good magnetic Dirac semimetal ma-
terial.

Weyl line The two protection mechanisms for spin–orbit
Weyl lines discussed in Section 4 can be extended to mag-
netic systems. The first type, namely, the protection by a hori-
zontal mirror, is the mostly encountered case. This horizontal
mirror is compatible with ferromagnets and antiferromagnets
with out-of-plane magnetic moments. A glide horizontal mir-
ror may also be preserved in certain antiferromagnets with in-
plane moments. A Weyl line emerges when two bands with
opposite mirror eigenvalues cross each other.

The second type with T Sx symmetry (and with broken
PT ) also works, since T Sx itself is a kind of magnetic symme-
try and is compatible with certain antiferromagnetic configu-
ration.
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Fig. 22. (a) Band structure of ferromagnetic monolayer MnN with SOC. The
crossing of α, β and γ bands forms two nodal loops near Fermi level. Panel
(b) shows the outer loop in monolayer MnN. (c) Band structure of mono-
layer CrN with SOC. Panel (d) shows the hybrid nodal loop in monolayer
CrN. Figures adapted with permission from Refs. [89,90].

So far, magnetic Weyl-line material candidates have been
proposed for the first type, e.g., in monolayer MnN,[89]

CrN,[90] AgN,[91] CsS,[92] CoSe,[93] InC,[94] and K2N.[95]

Figure 22 shows the magnetic Weyl lines in monolayer MnN
and CrN. Here, the lines are close to the Fermi level, and the
low-energy bands are fairly clean. No material candidate of
the second type has been reported yet. Experimentally, the
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Weyl lines in monolayer GdAg2 (which is ferromagnetic) have
been probed by ARPES.[96]

6. Topological edge states
Topological boundary states come with protection from

topological invariants defined in the bulk. For example, in 3D
Weyl semimetals, the surface Fermi arcs are protected by bulk
Chern numbers;[12] and the drumhead surface states in nodal
line semimetals are from the quantized Berry phase ν .[97,98]

For 2D systems, possible bulk invariants are 2D invariants de-
fined for the whole BZ (such as Chern number and Z2 invari-
ant for quantum spin Hall state) and 1D invariants defined on
a closed loop (such as Berry phase). For 2D TSMs, ideally,
the spectrum is gapless, and we do not have a well defined 2D
invariant. One may note that below Eq. (5), we mentioned the
spin-helical edge states due to 2D bulk Z2 invariant in mono-
layer HfGeTe.[54] However, in such case, the edge states have
no direct connection to the Dirac points. In other words, they
do not represent a feature (or a consequence) of the bulk nodal
structure.

A connection can be established between edge flat band
and bulk nodal points with nontrivial 1D invariant. A good
example is graphene. The two Weyl points in graphene carry
a π Berry phase ν = 1 (or νC =±1 if counting the chiral sym-
metry). This guarantees a π phase difference between the two
paths shown in Fig. 23. Here, path A has a nontrivial ν = 1,
so on the zigzag edge, there exists a flat edge band connect-
ing the projections of the two Weyl points. It should be noted
that although called an edge flat band, in practice the band is
generally dispersive, and the dispersion can be controlled by
modifying the boundary.[99] Boundary modification may also
change the BZ region for the appearance of the edge band.

(a) (b)

π0 0 K‘K

edge state
k

E

AB

Fig. 23. Zak phase and protected edge states. (a) For graphene, the Zak
phase is nontrivial in the red shaded region between the two Weyl points
and is trivial outside. (b) This leads to the flat edge band for the zigzag edge
of graphene.

With the above analysis, we see that the chance to have
topological boundary states in 2D TSMs is much reduced
compared to 3D. Particularly, for 2D nodal-line TSMs, they
typically do not possess protected edge states, or even if they
do, the boundary states would have no connection with the
nodal lines.

7. Outlook

The field of 2D TSMs is under rapid development. The
important problems to be address in the subsequent research
include the following.

First, we have introduced a variety of nodal structures
where the classification of 2D TSMs is based upon. Are they
complete? Is there any new class of 2D TSMs? This is a fun-
damental open question that needs to be addressed.

Second, regarding material realizations, although several
2D TSM materials have been experimentally verified in recent
years, including spin–orbit Dirac points in α-bismuthene,[56]

Weyl loops in monolayer Cu2Si,[77] CuSe,[78] and GdAg2,[96]

and Dirac lines in tri-atomic layer Bi(110),[85] for many
classes, we still do not yet have a good material candidate.
The standards for a good TSM material have been given in
Section 2 (which would disqualify many proposed examples
in literature). And graphene is a paradigmatic example of a
good TSM that one should always make reference to. The
lack of good materials severely hinders the research in this
field. Many interesting physical effects were predicted by as-
suming the ideal case, which is not met in the candidate mate-
rials. For example, in studies on 3D Weyl semimetal materials,
the low-energy bands for currently available materials are far
from ideal: the linear window is very small, there are extra-
neous bands nearby, and the existence of many Weyl points
forming clusters and leading to strong scattering within a clus-
ter. This poses difficulty in isolating effects that are truly from
the Weyl points and in interpreting experimental results.

We feel that considering material realizations, 2D TSMs
may have advantages over 3D. For 3D, extensive computa-
tional studies have been performed on the database of existing
3D materials.[100–102] Despite a large number of TSMs iden-
tified, good ones are quite rare (perhaps the best are still the
3D Dirac semimetals Na3Bi[103] and Cd3As2

[104]), and it is
fair to say that there is no one that has quality comparable to
graphene. In comparison, for 2D, we have the hope to design
materials with no 3D counterparts. In addition, 2D materials
are much more tunable than 3D ones. Non-ideal TSMs may
be salvaged by proper material engineering.

Finally, we still need to understand the physical proper-
ties of the various 2D TSMs. We need to understand what are
their distinct features and what could be useful for applica-
tions. Especially, we do not know what are the special effects
of 2D nodal-line semimetals. And research needs to go beyond
simple models and work more closely with realistic materials.
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