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There are many different classifications of entanglement for multipartite quantum systems, one of which is based
on the number of the unentangled particles. In this paper, we mainly study the quantum states containing at most k− 1
unentangled particles and provide several entanglement criteria based on the different forms of inequalities, which can both
identify quantum states containing at most k− 1 unentangled particles. We show that these criteria are more effective for
some states by concrete examples.
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1. Introduction
As a fundamental concept of quantum theory, quan-

tum entanglement plays a crucial role in quantum informa-
tion processing.[1] It has been successfully identified as a
key ingredient for a wide range of applications, such as
quantum cryptography,[2] quantum dense coding,[3] quantum
teleportation,[4,5] factoring,[6] and quantum computation.[7,8]

One of the significant problems in the study of quantum
entanglement theory is to decide whether a quantum state is
entangled or not. For bipartite systems, quantum states con-
sist of separable states and entangled states. Many well-known
separability criteria have been proposed to distinguish separa-
ble from entangled states.[9,10] In multipartite case, the clas-
sification of quantum states is much more complicated due
to the complex structure of multipartite quantum states. A
reasonable way of classification is based on the number of
partitions that are separable. According to that, N-partite
quantum states can be divided into k-separable states and k-
nonseparable states with 2 6 k 6 N. The detection of k-
nonseparability has been investigated extensively, many effi-
cient criteria[11–21] and computable measures[22–26] have been
presented. Different from the above classification, N-partite
quantum states can also be divided into k-producible states and
(k+ 1)-partite entangled states by consideration of the num-
ber of partitions that are entangled. It is worth noting that the
(k+1)-partite entanglement and the k-nonseparability are two
different concepts involving the partitions of subsystem in N-

partite quantum systems, and they are equivalent only in some
special cases.

In this paper, we focus on another characterization of
multipartite quantum states which is based on the number of
unentangled particles. We first present the definition of quan-
tum states containing at least k unentangled particles, and then
derive several criteria to identify quantum states containing at
most k − 1 unentangled particles by using some well-known
inequalities. Several specific examples illustrate the advantage
of our results in detecting quantum states containing at most
k−1 unentangled particles.

The organization of this article is as follows: In Section 2,
we review the basic knowledge which will be used in the rest
of the paper. In Section 3, we provide our central results, sev-
eral criteria that can effectively detect quantum states contain-
ing at most k−1 unentangled particles, and then their strengths
are exhibited by several examples. Finally, a brief summary is
given in Section 4.

2. Preliminaries

In this section, we introduce the preliminary knowledge
used in this paper. We consider a multiparticle quantum sys-
tem with state space ℋ=ℋ1 ⊗ℋ2 ⊗·· ·⊗ℋN , where ℋi (i =
1,2, . . . ,N) denote di-dimensional Hilbert spaces. For con-
venience, we introduce the following concepts. An N-partite
pure state |ψ⟩ ∈ ℋ1 ⊗ℋ2 ⊗ ·· ·⊗ℋN contains k unentangled
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particles, if there is k+1 partition γ1|γ2| · · · |γk+1 such that

|ψ⟩=
k+1⊗
l=1

|φl⟩γl ,

where |φl⟩γl is single-partite state for 1 6 l 6 k, while
|φk+1⟩γk+1 is a (N − k)-particle state. A mixed state ρ contains
at least k unentangled particles, if it can be written as

ρ = ∑
j

p j|ψ( j)⟩⟨ψ( j)|,

where p j > 0 with ∑ p j = 1, and |ψ( j)⟩ is the pure state con-
taining m j unentangled particles with m j > k.[27–29] Otherwise
we say ρ contains at most k−1 unentangled particles.

For N-partite quantum system ℋ1 ⊗ℋ2 ⊗·· ·⊗ℋN , let〈
N⊗

i=1

AiBi

〉
ρ

= tr

((
N⊗

i=1

AiBi

)
ρ

)
(1)

where ρ is the quantum state in ℋ1⊗ℋ2⊗·· ·⊗ℋN , Ai,Bi are
operators acting on the i-th subsystem ℋi, and “tr” stands for
trace operation.

Inequality plays an important role in quantum informa-
tion theory. In the following, we list some inequalities that
will be used throughout the paper.

Absolute value inequality∣∣∣∣∣ n

∑
i=1

ai

∣∣∣∣∣≤ n

∑
i=1

|ai| . (2)

Cauchy–Schwarz inequality

|⟨x|y⟩|2 ≤ ⟨x|x⟩⟨y|y⟩, (3)(
n

∑
i=1

aibi

)2

≤

(
n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
. (4)

Extending the Cauchy–Schwarz inequality gives an im-
portant inequality known as the Hölder inequality

n

∑
i=1

|aibi| ≤

(
n

∑
i=1

|ai|p
) 1

p
(

n

∑
i=1

|bi|q
) 1

q

, (5)

where p,q > 1, and 1/p+1/q = 1.

3. Main results

Now let us state our criteria identifying quantum states
containing at most k−1 unentangled particles for arbitrary di-
mensional multipartite quantum systems.

Theorem 1 If an N-partite quantum state ρ contains at
least k unentangled particles for 1 6 k 6 N−1, then it satisfies∣∣∣∣∣⟨ N⊗

i=1

AiBi⟩ρ

∣∣∣∣∣ ≤ ∑
γ

( k+1

∏
l=1

〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ

×
〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ

) 1
2k+2

, (6)

where Ai and Bi are operators acting on the i-th subsystem, and
the sum runs over all possible partitions {γ|γ = γ1|γ2| · · · |γk+1}
of N particles in which the number of particles in γl is 1 for
1 ≤ l ≤ k and is N − k for i = k + 1. If ρ violates inequal-
ity (6), then it contains at most k−1 unentangled particles.

Proof Firstly, we consider the pure state ρ = |ψ⟩⟨ψ| con-
taining k unentangled particles. Suppose that the pure state

|ψ⟩ =
k+1⊗
l=1

|ψl⟩γl under the partition γ1|γ2| · · · |γk+1, where γl

contains one particle for 1 ≤ l ≤ k, and γk+1 contains N − k
particles. Then for any subsystems γl , we have

∣∣∣∣∣⟨ N⊗
i=1

AiBi⟩ρ

∣∣∣∣∣ =
√√√√⟨

N⊗
i=1

AiBi⟩ρ⟨
N⊗

i=1

B†
i A†

i ⟩ρ =

√√√√k+1

∏
t=1

⟨
⊗
i∈γt

AiBi⟩ργt

k+1

∏
t=1

⟨
⊗
i∈γt

B†
i A†

i ⟩ργt
≤

√√√√k+1

∏
t=1

⟨
⊗
i∈γt

AiA
†
i ⟩ργt

k+1

∏
t=1

⟨
⊗
i∈γt

B†
i Bi⟩ργt

=

√
⟨
⊗
i∈γl

AiA
†
i ⟩ργl ∏

t ̸=l
⟨
⊗
i∈γt

AiA
†
i ⟩ργt

⟨
⊗
i∈γl

B†
i Bi⟩ργl ∏

t ̸=l
⟨
⊗
i∈γt

B†
i Bi⟩ργt

=

√
⟨(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)⟩ρ⟨(

⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )⟩ρ ,

where ργt = |ψt⟩γt ⟨ψt |. Here we have used the Cauchy–Schwarz inequality (3). Thus,∣∣∣∣∣⟨ N⊗
i=1

AiBi⟩ρ

∣∣∣∣∣ ≤
k+1

∏
l=1

√〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ

〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ

 1
k+1

≤ ∑
γ

k+1

∏
l=1

√〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ

〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ

 1
k+1

= ∑
γ

k+1

∏
l=1

〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ

〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ

 1
2k+2

.
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It shows that inequality (6) is right for pure state containing k
unentangled particles.

Now, we consider the case of the mixed state. Suppose
ρ = ∑

j
p jρ j is a mixed state with pure states ρ j containing at

least k unentangled particles, then∣∣∣∣∣⟨ N⊗
i=1

AiBi⟩ρ

∣∣∣∣∣≤ ∑
j

p j

∣∣∣∣∣⟨ N⊗
i=1

AiBi⟩ρ j

∣∣∣∣∣
≤ ∑

j
p j ∑

γ

( k+1

∏
l=1

〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ j

×
〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ j

) 1
2k+2

≤ ∑
γ

( k+1

∏
l=1

∑
j

p j
〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉 1
2
ρ j

×
〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉 1

2
ρ j

) 1
k+1

≤ ∑
γ

( k+1

∏
l=1

〈
(
⊗
i∈γl

AiA
†
i )⊗ (

⊗
i/∈γl

B†
i Bi)

〉
ρ

×
〈
(
⊗
i∈γl

B†
i Bi)⊗ (

⊗
i/∈γl

AiA
†
i )
〉

ρ

) 1
2k+2

,

where we have used the absolute value inequality (2), inequal-
ity (6) for pure states, the Hölder inequality (5) and Cauchy–
Schwarz inequality (4). The proof is complete.

Theorem 2 For any N-partite density matrix acting on
Hilbert space ρ ∈ ℋ1 ⊗ℋ2 ⊗ ·· · ⊗ℋN containing at least k
unentangled particles, where 1 ≤ k ≤ N −2, we have

∑
m ̸=n

∣∣∣∣∣⟨Um(
N⊗

i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣∣
≤ ∑

m ̸=n

√√√√⟨
N⊗

i=1

AiA
†
i ⟩ρ⟨UmUn(

N⊗
i=1

AiA
†
i )U

†
n U†

m⟩ρ

+(N − k−1)∑
m
⟨Um(

N⊗
i=1

AiA
†
i )U

†
m⟩ρ , (7)

where Ai is any operator of the subsystem ℋi, and Um =

11 ⊗·· ·⊗1m−1 ⊗um ⊗1m+1 ⊗·· ·⊗1N with um being any op-
erator of the subsystem ℋm and 1 j being identity matrix of the
subsystem ℋ j. If ρ violates inequality (7), then it contains at
most k−1 unentangled particles.

Proof We begin with the pure state. Suppose that the pure
state |ψ⟩ contains k unentangled particles, then there is a par-
tition γ1| · · · |γk+1 with γl containing one particle for 1 ≤ l ≤ k,
and γk+1 containing N − k particles, and it can be written as

|ψ⟩=
k+1⊗
l=1

|ψl⟩γl . When m,n in γk+1, we can obtain∣∣∣∣∣⟨Um(
N⊗

i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣∣

≤

√√√√⟨Um(
N⊗

i=1

AiA
†
i )U

†
m⟩ρ⟨Un(

N⊗
i=1

AiA
†
i )U

†
n ⟩ρ

≤
⟨Um(

N⊗
i=1

AiA
†
i )U

†
m⟩ρ + ⟨Un(

N⊗
i=1

AiA
†
i )U

†
n ⟩ρ

2
, (8)

where the first inequality holds because of Cauchy–Schwarz
inequality (3) and the second inequality follows from the mean
inequality. When m ∈ γl , n ∈ γl′ and l ̸= l′, we have∣∣∣∣⟨Um(

N⊗
i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣≤
√

⟨(
N⊗

i=1
AiA

†
i)⟩ρ⟨UmUn(

N⊗
i=1

AiA
†
i)U

†
n U†

m⟩ρ

(9)
by Cauchy–Schwarz inequality (3).

Combining inequalities (8) and (9) leads to

∑
m ̸=n

∣∣∣∣∣⟨Um(
N⊗

i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣∣
= ∑

m∈γl ,n∈γl′ ,l ̸=l′

∣∣∣∣∣⟨Um(
N⊗

i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣∣
+ ∑

m,n∈γk+1,m ̸=n

∣∣∣∣∣⟨Um(
N⊗

i=1

AiA
†
i )U

†
n ⟩ρ

∣∣∣∣∣
≤ ∑

m∈γl ,n∈γl′ ,l ̸=l′

√√√√⟨(
N⊗

i=1

AiA
†
i )⟩ρ⟨UmUn(

N⊗
i=1

AiA
†
i )U

†
n U†

m⟩ρ

+
1
2 ∑

m,n∈γl ,m̸=n

(
⟨Um(

N⊗
i=1

AiA
†
i )U

†
m⟩ρ+⟨Un(

N⊗
i=1

AiA
†
i )U

†
n ⟩ρ

)

≤ ∑
m ̸=n

√√√√⟨
N⊗

i=1

AiA
†
i ⟩ρ⟨UmUn(

n⊗
i=1

AiA
†
i )U

†
n U†

m⟩ρ

+(N − k−1)∑
m
⟨Um(

N⊗
i=1

AiA
†
i )U

†
m⟩ρ .

Hence, inequality (7) holds for any pure state containing k
unentangled particles. It is easy to prove that it is also right
for any mixed state containing at least k unentangled particles
by utilizing absolute value inequality, inequality (7) for pure
states, and the Cauchy–Schwarz inequality (4).

Theorem 3 For any N-partite fully separable state ρ , one
has∣∣∣∣⟨Um(

N⊗
i=1

AiA
†
i)U

†
n ⟩ρ

∣∣∣∣≤
√
⟨(

N⊗
i=1

AiA
†
i)⟩ρ⟨UmUn(

N⊗
i=1

AiA
†
i)U

†
n U†

m⟩ρ

(10)
for any m ̸= n. If ρ does not satisfy the above inequality (10),
then it is entangled.

Proof The proof of this result is quite similar to Theorem
2. Note that there is only one case that m,n belong to differ-
ent γl if ρ = |ψ⟩⟨ψ| is fully separable pure state, which en-
sures that inequality (10) is true for fully separable pure state.
Hence, inequality (10) also holds for fully separable mixed
states.

100306-3



Chin. Phys. B Vol. 30, No. 10 (2021) 100306

The following examples shows that the power of our re-
sults by comparison with observation 5 in Ref. [29].

Example 1 For the family of quantum states

ρ(p) = p|Ψ5⟩⟨Ψ5|+
1− p

55 1,

where |Ψ5⟩=
1√
5

4
∑

i=0
|iiiii⟩.

Applying Theorem 1 by choosing Ai = |1⟩⟨0| and Bi =

|0⟩⟨0|, we can get that, if p > 0.0016, ρ contains at most 3
unentangled particles; if p > 0.0173, ρ contains at most 2 un-
entangled particles; if p > 0.0325, ρ contains at most 1 un-
entangled particles; and if p > 0.0399, ρ contains at most 0
unentangled particles. But observation 5 in Ref. [29] cannot
detect any quantum states containing at most k unentangled
particles for 0 ≤ k ≤ 3.

Example 2 Consider the N-qubit mixed states

ρ(p) = p|G⟩⟨G|+ 1− p
2N 1,

where |G⟩= 1√
2
(|0⟩⊗N + |1⟩⊗N).

Let Ai = |1⟩⟨0|,Bi = |0⟩⟨0|, then by using Theorem 1, we
know that ρ(p) contains at most N − 3 unentangled particles
when pN−2 < p ≤ 1, while by observation 5 in Ref. [29], ρ(p)
contains at most N−3 unentangled particles when p′N−2 < p≤
1. The exact value of pN−2 and p′N−2 for N = 9,10,. . . ,15 are
shown in Table 1.

Table 1. For ρ(p) = p|G⟩⟨G|+ 1−p
2N 1, the thresholds of pN−2, p′N−2 for the

quantum states containing at most N − 3 unentangled particles detected by
Theorem 1 and observation 5 in Ref. [29] for 9 ≤ N ≤ 15, respectively, are
illustrated. When pN−2 < p ≤ 1 and p′N−2 < p ≤ 1, ρ(p) contains at most
N − 3 unentangled particles by Theorem 1 and observation 5 in Ref. [29],
respectively. Clearly, Theorem 1 can detect more states containing at most
N −3 unentangled particles than observation 5 in Ref. [29] for 9 ≤ N ≤ 15.

N 9 10 11 12 13 14 15
pN−2 0.1263 0.0824 0.0519 0.0317 0.0189 0.0111 0.0064
p′N−2 0.1547 0.1350 0.1197 0.1076 0.0977 0.0894 0.0824

Example 3 Consider the N-qubit mixed states

ρ(p,q) = p|WN⟩⟨WN |+qσ
⊗N
x |WN⟩⟨WN |σ⊗N

x +
1− p−q

2N 1.

Here |WN⟩ =
1√
N
(|10 · · ·0⟩+ |01 · · ·0⟩+ · · ·+ |0 · · ·01⟩) and

σx is the Pauli matrix.
By choosing um = σx, Ai = |0⟩⟨0| (or Ai = |1⟩⟨0|), our

Theorem 2 can identify quantum states containing at most
k− 1 unentangled particles. For k = 2, the detection param-
eter spaces in which the quantum states contains at most 1
unentangled particles when N = 6,7,8,9 are shown in Fig. 1.

When p = 0, the quantum state ρ(p,q) is

ρ(q) = qσ
⊗N
x |WN⟩⟨WN |σ⊗N

x +
1−q
2N 1.

By choosing um = σx, Ai = |1⟩⟨0|, our Theorem 2 can iden-
tify more quantum states containing at most k − 1 unentan-
gled particles than observation 5 in Ref. [29] when N = 8. For

1 ≤ k ≤ 6, when qk < q ≤ q′k, these quantum states containing
at most k−1 unentangled particles which only can be detected
by our Theorem 2, but not by observation 5 in Ref. [29]. The
exact values of qk and q′k for 1 ≤ k ≤ 6 are shown in Table 2.

Table 2. For ρ(q) = qσ⊗N
x |WN⟩⟨WN |σ⊗N

x + 1−q
2N 1 when N = 8, the thresh-

olds of qk , q′k for the quantum states containing at most k− 1 unentangled
particles detected by Theorem 2 and observation 5 in Ref. [29] for 1≤ k ≤ 6,
respectively, are illustrated. When qk < q ≤ 1 and q′k < q ≤ 1, ρ(q) contains
at most k−1 unentangled particles detected by our Theorem 2 and observa-
tion 5 in Ref. [29], respectively. The symbol ∖ means that observation 5 in
Ref. [29] cannot identify any quantum states containing at most 0 unentan-
gled particles and at most 1 unentangled particles.

k 1 2 3 4 5 6
qk 0.2889 0.1579 0.1028 0.0725 0.0533 0.0400
q′k ∖ ∖ 0.8647 0.6392 0.4587 0.3234

a: N=6

b: N=7

c: N=8

d: N=9

a

bcd

0 0.2 0.4 0.6 0.8 1.0

q

0.2

0.4

0.6

0.8

1.0

k/

p

Fig. 1. Detection quality of Theorem 2 for the state ρ(p,q) = p|WN⟩⟨WN |+
qσ⊗N

x |WN⟩⟨WN |σ⊗N
x + 1−p−q

2N 1 for k = 2 when N = 6,7,8,9. The area en-
closed by magenta a (green line b, blue line c, red line d), p axis, line
q = 1− p and q axis corresponds to the quantum states containing at most 1
unentangled particles when N = 6 (N = 7, N = 8, N = 9), respectively.

4. Conclusion
In this paper, we have investigated the problem of detec-

tion of quantum states containing at most k − 1 unentangled
particles. Several criteria for detecting states containing at
most k− 1 unentangled particles were presented for arbitrary
dimensional multipartite quantum systems. It turned out that
our results were effective by some specific examples. We hope
that our results can contribute to a further understanding of en-
tanglement properties of multipartite quantum systems.
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[29] Tóth G 2012 Phys. Rev. A 85 022322

100306-5

https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/S42254-018-0003-5
https://doi.org/10.26421/QIC8.8-9-7
https://doi.org/10.26421/QIC10.9-10-8
https://doi.org/10.26421/QIC10.9-10-8
http://doi.org/10.1103/PhysRevA.82.062113
http://doi.org/10.1209/0295-5075/104/20007
http://doi.org/10.1103/PhysRevA.91.042313
https://doi.org/10.1038/srep13138
http://doi.org/10.1103/PhysRevA.93.042310
http://doi.org/10.1007/S11433-017-9070-4
http://doi.org/10.1007/S11433-017-9070-4
http://doi.org/10.1088/1674-1056/27/2/020306
https://doi.org/10.1088/1674-1056/27/3/030302
https://doi.org/10.1088/1674-1056/27/3/030302
http://doi.org/10.1103/PhysRevA.90.022315
http://doi.org/10.1103/PhysRevA.68.042307
http://doi.org/10.1103/PhysRevLett.93.230501
http://doi.org/10.1103/PhysRevLett.93.230501
http://doi.org/10.1103/PhysRevA.83.062325
http://doi.org/10.1103/PhysRevA.86.062323
https://doi.org/10.1103/PhysRevLett.112.180501
http://doi.org/10.1088/1367-2630/7/1/229
http://doi.org/10.1103/PhysRevA.79.042334
http://doi.org/10.1103/PhysRevA.79.042334
http://doi.org/10.1103/PhysRevA.85.022322

	1. Introduction
	2. Preliminaries
	3. Main results
	4. Conclusion
	References

