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Despite the growing interest in macroscopic epidemiological models to deal with threats posed by pandemics such
as COVID-19, little has been done regarding the assessment of disease spread in day-to-day life, especially within build-
ings such as supermarkets where people must obtain necessities at the risk of exposure to disease. Here, we propose an
integrated customer shopping simulator including both shopper movement and choice behavior, using a force-based and
discrete choice model, respectively. By a simple extension to the force-based model, we implement the following pre-
ventive measures currently taken by supermarkets; social distancing and one-way systems, and different customer habits,
assessing them based on the average individual disease exposure and the time taken to complete shopping (shopping effi-
ciency). Results show that maintaining social distance is an effective way to reduce exposure, but at the cost of shopping
efficiency. We find that the one-way system is the optimal strategy for reducing exposure while minimizing the impact on
shopping efficiency. Customers should also visit supermarkets less frequently, but buy more when they do, if they wish to
minimize their exposure. We hope that this work demonstrates the potential of pedestrian dynamics simulations in assessing
preventative measures during pandemics, particularly if it is validated using empirical data.

Keywords: pedestrian dynamics, occupant exposure, COVID-19, simulation study
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1. Introduction
With the rapid spread of COVID-19 around the world, the

World Health Organization (WHO) declared a pandemic.[1] It
has fundamentally altered the daily activities of humans all
over the world. Governing bodies recognize that intervening
strategies are needed to reduce the spread of COVID-19 and
so reduce its impact on human health.[2] These measures in-
clude banning mass gatherings, introducing social distancing,
where people must remain a fixed distance apart, and one-way
systems in spaces with high footfalls. These restrictions could
be present for months or years to come,[3] so it is worthwhile
to attempt to model and quantify the transmission risk of peo-
ple when they make necessary trips and expose them to other
people.

Modelling epidemiological transmission is crucial to un-
derstand the transmission dynamics of the pandemic and pro-
vide insights into the design of alternative interventions.[4] In
previous work, the susceptible-infected-removed (SIR) model
has been used widely to predict the spread of infectious dis-
eases in humans.[5] In this model, people are categorized by
S, I, or R (susceptible, infectious, or removed) states and can
move between these states. SIR model and its extended mod-
ifications have been used to estimate disease spread at large
scales.[6,7] However, these models do not explicitly consider
the day-to-day interactions between people at smaller scales,

such as in buildings.
Understanding pedestrian dynamics is essential for study-

ing disease transmission within buildings and has been exten-
sively investigated through statistical modelling and simula-
tion. These models can represent realistic pedestrian behav-
iors and are generally distinguished into macroscopic and mi-
croscopic ones. Macroscopic models generate the bulk prop-
erties of groups of pedestrians, such as flows and densities,
without considering individuals,[8] and cannot be readily used
for studying disease transmission. In contrast, microscopic
models consider each pedestrian as a self-driven agent which
has simple rules for interacting with both the environment and
other agents, and aggregating these behaviors over large num-
bers of agents can lead to interesting collective phenomena.
Cellular automata,[9,10] floor field models,[11] and force-based
models[12] are common examples of these kinds of models.

Exposure risk of pedestrians to most diseases in a con-
fined space largely depends on the local interactions be-
tween other, potentially infected, pedestrians. Much empir-
ical research has been done to enhance the understanding
of interactions.[13–15] In force-based models, interactions of
a pedestrian with both others and the environment can be
thought of as attractive or repulsive forces acting on said
pedestrian.[16,17] For example, a pedestrian is assumed to keep
a certain distance from others (personal space), if someone

∗Project supported by the China Scholarship Council (Grant No. 201906370050).
†Corresponding author. E-mail: aa18187@bristol.ac.uk
‡Corresponding author. E-mail: huyang1@mail.ustc.edu.cn
© 2021 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

098903-1

http://dx.doi.org/10.1088/1674-1056/ac0ee8
mailto:aa18187@bristol.ac.uk
mailto:huyang1@mail.ustc.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 30, No. 9 (2021) 098903

enters this space, the pedestrian will try to move away to
maintain their personal space.[18] Alternatively, there are some
cases where pedestrians will stay close to others, for example,
traveling with relatives or friends, or following guides.[19]

While previous research has carefully studied pedestrian
dynamics in various contexts, little is known about the influ-
ences of pedestrian behaviors on the spread of disease, es-
pecially in supermarkets, where everyone must visit to buy
food. This is one of the essential activities which puts peo-
ple at greater risk of contracting disease, due to being around
others in a confined space. To try to reduce this risk, super-
markets have taken measures such as limiting the maximum
number of occupants, introducing directional floor markings
and signs to create one-way movement around the store (one-
way system), and asking customers to maintain social distance
from others.[20] Recently, the “exposed” model has been de-
veloped to assess the exposure risk of individuals in confined
spaces during pandemics.[21] This model is designed to be
used in tandem with microscopic pedestrian dynamics mod-
els to investigate different types of disease transmission. The
effect of some preventative measures taken in supermarkets,
including restricting the number of customers, keeping social
distance, and entering with a shopping cart on the average
contact degree of each person, has been investigated through
simulation.[22] However, these restrictions may increase the
amount of time people spend in supermarkets and thus in-
crease their exposure time. So, it is essential to investigate
the risk-efficiency trade-off to find the optimal strategy for the
shopper.

In this contribution, we employ a force-based model to
implement preventative measures seen during this pandemic,
such as social distancing. We focus on the influence of these
measures in supermarkets on the exposure risk of customers.
Specifically, we investigate the trade-off between exposure
risk and the shopping time to develop the optimal shopping
strategy when such protective measures are in place.

There are two main aspects of innovation in this work.
First, we develop a simulator that can illustrate disease trans-
mission and pedestrian movement dynamics. It can generate
data to assess a variety of metrics regarding strategies to limit
the spread of disease and/or optimize pedestrian flow. The
other is to establish a model that can evaluate the impact of dif-
ferent disease-prevention measures on customer shopping effi-
ciency and infection risk simultaneously and determine which
are the most suitable, given a user’s set of priorities.

Compared with previous studies, the method we proposed
considers how a manager of a supermarket may optimize their
store in order to comply with local restrictions while max-
imizing store turnover. This work also compares shopping
strategies that maybe used by customers and determines which
has the maximum reduction in exposure risk. More impor-

tantly, our model can allow supermarket managers to adjust
the weighting of risk and efficiency according to their needs.
In addition, this framework allows for the inclusion of empiri-
cal data to calibrate the model.

In the following, we first present an integrated simula-
tion for shopper movements (Subsection 2.1) and choice be-
havior in a supermarket (Subsection 2.2). We then describe
the exposed model and how we use it to assess a shopper’s
exposure risk (Subsection 2.3). Using this framework, a simu-
lation study (Subsection 3.1) is conducted, implementing dif-
ferent restrictions, including social distance and one-way sys-
tems, along with different shopping habits (Subsection 3.2).
Results from this study are presented, examining the trade-
off between customers’ exposure risk and shopping efficiency
(Subsection 4) for the different scenarios. Finally, we assess
the implications of these results on shopping behavior during
the current pandemic (Subsection 5).

2. Model
We develop an integrated model to study pedestrian

movements and shopping behavior in a supermarket. Specifi-
cally, we employ a modified force-based model that can vary
the social distance between pedestrians to simulate current re-
strictions (Subsection 2.1). A simple destination choice model
is used to govern the activities that shoppers perform (Subsec-
tion 2.2). In addition, the exposed model[21] is used to assess
the exposure risk of pedestrians over the course of their shop-
ping trip (Subsection 2.3).

2.1. Force-based model with social distance

In our simulator, the movement of people is based on a
force-based model.[12] Each person i of mass mi has a desired
speed v0

i in a certain desired direction 𝑒0
i (which is a unit vec-

tor) towards a particular location, acting as an attractive force.
Simultaneously, the person would be affected by the repul-
sive forces from other people 𝑓i j and obstacles 𝑓iW summed
over all other people and all obstacles in the environment, re-
spectively. Using Newton’s second law of motion, the person
adjusts their current velocity 𝑣i(t) within a certain relaxation
time τi. Hence, the movement of the person is described by
the following equation:

mi
d𝑣i

dt
= mi

v0
i (t)𝑒

0
i (t)−𝑣i(t)

τi
+∑ j 6=i𝑓i j +∑W 𝑓iW . (1)

Assuming that each person can be represented by a circle of
given radius, the repulsive interaction between two people, i
and j, is given by

𝑓i j =
{

Ai exp [(ri j−di j)/Bi]+ kg(ri j−di j)
}
𝑛i j

+κg(ri j−di j)∆vt
i j𝑡i j, (2)

where di j denotes the distance between the centers of i and j,
and ri j is the sum of their radii. Ai and Bi are constants that
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determine the strength and range of the repulsive interaction
force between pedestrians, respectively. k and κ are parame-
ters of body compression force and sliding friction force be-
tween pedestrians, respectively. g(x) is zero if the two people
do not touch each other and x otherwise. kg(ri j−di j) repre-
sents body force to counteract body compression, and 𝑛i j is
the normalized vector pointing from person i to j. A sliding
friction κg(ri j−di j)∆vt

i j𝑡i j impedes relative tangential mo-
tion if the two people touch each other, otherwise, it is zero.
𝑡i j denotes the tangential direction (perpendicular to 𝑛i j) and
∆vt

i j is the difference in tangential speed between i and j.
The interaction of person i with the wall W is treated anal-

ogously as

𝑓iW = {Ai exp [(ri−diW )/Bi]+ kg(ri−diW )}𝑛iW

+κg(r j−diW )(𝑣i · 𝑡iW )𝑡iW , (3)

where ri is the radius of i, diW is the distance between the cen-
ter of i to the closest point of the boundary of an obstacle, W .
𝑛iW is the normalized vector acting perpendicularly to diW ,
and 𝑡iW is the vector acting tangentially to diW (perpendicular
to 𝑛iW ).

We use the minimum distance ri j − di j to represent the
social distance between people. Bi represents the effective
length scale over which the interpersonal repulsive force takes
effect, such that increasing Bi increases the effective distance
between people. To calculate the value of Bi necessary for
ri j−di j to be a specific social distance between two people, i
and j, we use the following relation:

mi
v0

i (t)−|𝑣i (t) |
τi

≈ Ai exp [(ri j−di j)/Bi] , (4)

where |𝑣i (t) | is the magnitude of 𝑣i(t). Ai and Bi are the same
as that in Eq. (2). This assumes that the distances from per-
son i to all other people (that are not j) and to all obstacles
are much greater than di j, so that their contributions to 𝑓i j in
Eq. (1) are negligible.

2.2. Pedestrian shopping behavior

In this simulator, each agent is assigned a set of activities
to perform in the supermarket. Each activity can be performed
at only one destination in this work, though this need not be
the case in general. Based on this schedule of activities, the
probability of choosing which activity to perform/destination
to visit next is computed using a multinomial logit discrete
choice model[23] specified as follows:

Ps =
exp(βdds)

H
, (5)

where Ps is the probability of an agent choosing destination
s, βd is the desirability parameter, and H is the normalization

constant which ensures that the sum of choice probabilities
over all destinations is unity. ds is the desirability of s, and is
determined by the position of the activity associated with s in
the activity schedule of the agent, such that

ds = e−a, (6)

where a is the position of the activity in the agent’s current
schedule. For example, consider a scenario where an agent
can choose from one of four destinations, and each has an ac-
tivity labeled A–D, sequentially. If an agent has the schedule
‘A, B, C, D’, then d1 = e−1, d2 = e−2, d3 = e−3, d4 = e−4. In
this work, an agent’s next destination depends exclusively on
its activity schedule, where the destination most likely to be
visited is the one with the next activity. To ensure that agents
almost always perform the next activity in their schedule, we
set βd = 20.

3. Simulations
3.1. Simulator description

This section describes the agent-based simulator used in
this study, which was written in Java. The simulator can be
used to look at both movement and choice behavior of pedes-
trians in public spaces and is based on the simulator used in
Bode and Codling.[26] There is a video showing the simulator
in action in the supplementary materials.

Agents can be added to the simulation either at random
available locations in the space or at a predefined set of co-
ordinates. Each agent is given a schedule of activities to per-
form, which can influence the destinations that they visit and
their order. The operational behavior of agents is described by
a force-based model, as seen in Subsection 2.1. Destinations
can be placed at any position in the space not occupied by a
wall or obstacle and is assigned to one or more activities that
can be performed there. Agents navigate to different destina-
tions using static floor fields unique to each destination. These
floor fields are calculated in the same way as described in the
work by Bode and Codling,[26] where space is divided into
a square grid, and each destination has their own floor field
values which are assigned to each cell according to their dis-
tance from the destination cell. 𝑒0

i in Eq. (1) is calculated to be
the direction of the maximum increase in the floor field at the
agent’s current position, with the agent’s chosen destination
having the largest floor field value. An agent’s next destina-
tion is determined by a given choice model, which is specified
as input for the simulator, allowing any choice model specifi-
cation to be used, but in this work, we use the model specified
in Eq. (5).

When agents reach a destination, they spend a short
amount of time there, mimicking browsing or purchasing be-
havior. This shopping time, ts is sampled from a shifted expo-
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nential distribution,

ts = t0 + exp(−λ t), (7)

where t is the time measured in simulation time-steps (0.05 s),
and t0 and λ are parameters such that t0 = 5 s and λ = 0.01.
t0 controls the minimum possible waiting time at a destination
and λ controls the spread of possible waiting times. The val-
ues of t0 and λ were chosen to produce a distribution of wait-
ing times that are reasonable and intuitive. Once they have
spent ts timesteps at the destination, they then select their next
destination using the model described in Eq. (5). Their activity
schedule is updated to remove the associated activity. They do
this for each activity in their schedule until it is empty. At this
point, the agent’s next destination is the exit, where they then
leave the simulation.

The simulator takes the following of inputs:

• the layout of the environment,

• the total number of agents,

• the total number of time steps to run the simulation for,

• the values of any choice model parameters,

• the length of the activity schedule for all agents.

The different supermarket environments used in this study are
shown in Fig. 1. There are 12 destinations where each has one
unique activity that can be performed (so there are 12 activities
with only one place to perform each of them). For this study,
agents are added at the entrance and initially prescribed a set
of randomly allocated activities to perform. The activities are
then sorted in order of increasing distance from the entrance
to their associated destination. This is done to prevent agents
from doubling back in the one-way system scenarios and rep-
resents the real-life tendency for supermarket shoppers to visit
places closest to the supermarket entrance first.[27] The total
size of the simulated spaces is 20×20 m2 and, to replicate the
capacity constraints imposed during a pandemic, a maximum
of 20 agents are allowed in the spaces at any time, correspond-
ing to an average density of 0.05 agents/m2. When there are
fewer than 20 agents in the simulation, the simulator places
new agents at the entrance, if no other agents are too close
(i.e., beyond social distance).

The Ai and Bi from Eq. (1) are fixed across all agents,
with Ai = 2000 and τi = 0.5 s, as originally specified by Hel-
bing et al.[12] Social distancing is implemented by changing
the Bi parameter (see Subsection 2.1). Under normal condi-
tions, we use Bi = 0.08,[12] and using Eq. (4), Bi ≈ 0.15 for
1 m social distancing, and Bi ≈ 0.4 for 2 m social distancing.
However, due to the limitations in the simulator, Bi could not
be increased above 0.2, so a social distance of 2 m was not

possible, and instead we used Bi ≈ 0.2, corresponding to a so-
cial distance of 1.2 m. This is smaller than the recommended
social distances[28] but should be sufficient to establish general
relationships between social distance with both exposure risk
and shopping efficiency. For each scenario, the simulation is
run for 1-hour of simulated time (72000 time steps at 0.05 s
per time step) and repeated ten times. The average exposure
risk and shopping efficiency over the 10 replicates is reported.
The simulator outputs the positions and directions of each en-
tity at each time step along with whether the agent has left the
simulation.

a destination

5 m

5 m

3 m

3 m

3 m

unwalkable space

virtual border

unwalkable space

entrance entrance

exit exit

(c) (d)

20 m

1
0
 m

5 m 5 m

an agent

entrance

exit

(a) (b)

entrance

exit

2
0
 m

Fig. 1. Destination layout of the supermarket (a) and three environments
used in the simulations: the supermarket where agents can move freely (b),
the one-way system with narrow passages (c), and one-way with wide pas-
sages (d). Each agent enters the supermarket through the entrance and then
begins to visit each destination in the assigned schedule. Once their sched-
ule is complete, each person heads toward the exit and are removed from the
simulation. The colored stars represent destinations agents may visit. Each
agent is represented as a circle colored according to which destination they
are heading towards. The line indicates their current direction, and the length
of it represents their current speed.

3.2. Different scenarios

Several different strategies/scenarios are investigated,
looking at both a person’s exposure to others and how quickly
they can complete their shopping trip. The different strate-
gies considered are shown in Table 1. Firstly, there is the pre-
pandemic shopping situation, where agents can move around
supermarkets freely and do not need to observe social distanc-
ing. This “free-for-all with no social distancing” is our base
case to which all other scenarios are compared. To look at
the effect of social distancing on exposure and shopping effi-
ciency, a scenario where agents can still move freely but ob-
serve social distancing (free-for-all with social distancing) is
included. To investigate this further, two additional scenarios
are defined, where the social distancing is 1 m or above 1 m,
as commonly described in government guidance.[5]

Customers often adopt two different strategies when
shopping, both before and during the pandemic, where some
shop frequently (e.g., maybe every 2–3 days), but only shop
for a small amount of time/buy only a few items, and others
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may shop relatively infrequently (e.g., maybe once a week),
but spend more time in the store/buy more items. To assess
whether one of these strategies is better for people who are
more concerned with minimizing their exposure or maximiz-
ing their shopping efficiency, these two strategies are included.
These different shopping strategies are represented using the
length of agent’s activity schedule as a proxy.

In some supermarket chains, one-way systems are in
place in an attempt to minimize the exposure risk of
customers.[20] To test this idea, one-way versions of the free-
for-all supermarket environment are created by placing artifi-
cial barriers to force entities to move along a prescribed route
from the entrance to exit. One has wide walkways, where
agents can pass each other, and the other has narrow walk-
ways where they cannot. As mentioned in Subsection 3.1, to
ensure that agents obey the one-way system, their schedules
are ordered in terms of the distance of the destination associ-
ated with that activity from the entrance. The social distance
for the scenarios is above 1 m, and each agent visits 5 different
destinations in the scenarios unless otherwise specified.

Table 1. Summary of the different scenarios.

Scenario
Social

Environment
Activities

distance (m) performed

Free-for-all without
0 supermarket 5

social distancing
Free-for-all with

> 1 supermarket 5
social distancing

Social distance 1 m 1 supermarket 5
Social distance > 1 m > 1 supermarket 5

Long schedule > 1 supermarket 8
Short schedule > 1 supermarket 3

One-way system
> 1 one way (wide) 5

with wide passages
One-way system

> 1 one way (narrow) 5
with narrow passages

3.3. Scenario metrics

COVID-19 can be transmitted in several ways, such as
airborne and physical contact.[24] The EXPOSED model[21]

allows for several types of disease transmission. When consid-
ering exposure by physical contact (the distance of two agents
is smaller than two times of body radius) in this simulator, it is
almost impossible for two agents to touch one another. This is
due to the values of Bi needed to implement social distancing
(see Subsection 2.1) and the small number of agents present
at any one time (see Subsection 3.1). We consider exposure
to others within some distance (here we use d ≥ 1 m), with an
additional face-to-face exposure if agents are facing each other
within the social distance, defined by a fixed angle of contact
(< 120◦) between the current directions of agents. Therefore,
we assess two kinds of exposure: social distance and face-to-
face contact disease transmission in this work.

We use the global assessment of exposure G defined as in
the exposed model below:[21]

G = ∑
N
l=1 rl ·Cl , (8)

where l is the number of people an agent is exposed to during
a simulation, N is the maximum number of agents to which an
agent is exposed, and rl is the risk degree. In this paper, we
assume that the risk degree is equal to the number of people an
agent is exposed to, i.e., r1 = 1 means that an agent is exposed
to 1 agent, r2 = 2 means that an agent is exposed to 2 agents,
and so on. Cl is cumulative exposure time-steps to l people.
According to the literature,[25] the exposure mass percentage
at 0 m is 100%, that at 1 m is about 40%, and that at 2 m is
about 30%. In our study, the exposed distance we used is 1 m
both for social distance method and face-to-face method. We
assume that a homogeneous distribution of air in the environ-
ment. So the weights of exposure of two methods are weighted
equally.

The cumulative exposure time Cl is defined below:

Cl =
n

∑
l=1

T i
l , (9)

where n is the total number of agents in the supermarket. T i
l

is the exposure time-step of agent i who is exposed to a given
number of agents l ≥ 1.

The exposure time of each agent i exposed to a given
number of agents l is calculated as follows:

T i
l =

tf

∑
to

β =

{
1,
0, (10)

where to = 1, tf = 72000, i.e., the total number of simulation
time-step. When i is exposed to l agents, β = 1, otherwise
β = 0.

Though preventative measures can reduce the spread of
disease, they can also impact the time spent by people in shops.
From the perspective of supermarket managers, the rate of
throughput (number of people that enter and leave the store per
hour) is a good measure of store turnover. Therefore, we define
the shopping efficiency as the total number of distinct agents
that appeared over the course of the simulation (i.e., over the
course of 1 hour) and then subtracting 20, the maximum occu-
pancy in the simulations. This assumes that there are 20 agents
at the last time-step that have not finished their shopping. To
consider the fact that agents with shorter schedules will, on
average, finish their shopping quicker than those with longer
schedules, we standardize shopping efficiency by multiplying
by the length of activity schedules in each scenario. Similarly,
since the length of activities in eight scenarios is different, to
make our exposure results comparable, we standardize G in
Eq. (6) by dividing by the schedule length in each scenario.
Thus, we get a global assessment of exposure per activity per
hour and shopping efficiency as the total number of activities
completed over all agents per hour.
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4. Results
4.1. Effects of social distancing

We first establish how social distancing influences expo-
sure risk and shopping efficiency. As shown in Fig. 2(a), the
total exposure due to agents being within social distance de-
creases as the social distance between agents increases. The
exposure due to face-to-face contact also decreases when so-
cial distance is enforced. However, it does not make a big dif-
ference when the social distance is 1 m and above 1 m. This
implies that, in this case, if a disease is primarily transmitted
through face-to-face contact, then only relatively small social
distances need to be implemented. Despite having no empiri-
cal validation, our results show that keeping social distancing
is an effective way to reduce costumers’ exposure during a
pandemic in supermarkets.
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Fig. 2. Average values over ten simulation replicates of the global assess-
ment of exposure through social distance and face to face transmission (a)
and shopping efficiency of people (b) with increasing social distance. Error
bars represent one standard deviation from the average.

In terms of shopping efficiency (Fig. 2(b)), it is obvious
that as social distance increases, the agents’ shopping effi-
ciency significantly decreases, dropping about 40% when the
social distance is above 1 m. One possible explanation for this
is that keeping social distance impedes the natural movements
of agents, as agents must wait until there is sufficient distance
from others before moving or performing activities.

Our simulation results confirm the effectiveness of social
distancing in reducing contact among customers and reveal the

decrease in customers’ shopping efficiency when implemented
in supermarkets.

4.2. Effects of shopping strategy

Figure 3 shows the exposure and shopping efficiency of
agents with different shopping strategies. When costumers
have a longer shopping schedule, they have less exposure risk
through both social distance and face-to-face contact. One
possible reason for this might be that agents who have more
activities to complete tend to stay longer in the supermarket
and thus relatively reduce the maximum possible number of
agents that enter the supermarket while they are present due to
the occupancy constraint. The risk of exposure from adding
more agents in the confined space might be greater than the
risk of agents staying in the store for a long time.
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Fig. 3. Average values over ten simulation replicates of the global assessment
of exposure through social distance and face to face transmission (a) and
shopping efficiency of people (b) when they have different shopping strate-
gies, using schedule length as a proxy. Error bars represent one standard
deviation from the average.

In terms of shopping efficiency (Fig. 3(b)), agents with
a longer schedule are more likely to have higher shopping
efficiency. Shopping efficiency is defined as the total num-
ber of activities agents perform in a simulation. Compared to
agents with a long schedule, the agents with a short schedule
can quickly complete the required shopping activities, while
spending roughly the same amount of time entering and leav-
ing the store. Therefore, from a general perspective, agents
with a short schedule tend to spend a larger proportion of time
entering and leaving the supermarket than those with a long
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schedule, therefore making better use of their time. This find-
ing indicates the shopping strategy of shopping infrequently
but buying more items is better than shopping frequently for a
few items both in terms of reducing the exposure and improv-
ing shopping efficiency.

4.3. Effects of one-way system

Figure 4 shows agents’exposure risk and shopping effi-
ciency with narrow/wide or without a one-way system. It is
found that when agents can move freely in the supermarket,
they have the highest shopping efficiency and highest expo-
sure risk. There is only one obstacle in the supermarket (see
Fig. 1), so in this situation, agents with random assigned shop-
ping schedules can direct head for the destinations freely, with-
out considering the influence of the one-way system. It can
reduce the time each agent spends on reaching the destina-
tions but increase the chance to contact other agents, leading
to higher exposure risk. It is also clear that the exposure risk
for both wide and narrow one-way systems is similar, so there
is little added benefit from narrowing passages such that peo-
ple cannot pass each other.
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In contrast, when the one-way system is implemented in
the supermarket, shopping efficiency decreases, particularly
when narrow passages are employed. As agent movements
are restricted by the one-way system, they are only allowed to
move along pre-designed routes, which are unlikely to be the

optimal ones in terms of travel time between destinations. On
average, each agent’s speed may significantly decrease, due to
other agents blocking the way, particularly when narrow pas-
sageways are used. In this case, customers must wait until oth-
ers complete their shopping activities before they can proceed
further along the passageway.

Therefore, we confirm that the one-way system is effec-
tive in lowering the exposure risk of agents. In terms of the
two kinds of the one-way system, both have similar exposure
risks. However, the one-way system with wide passages only
slightly decreases shopping efficiency compared to the pre-
pandemic free-for-all scenario. So, the one-way system with
wide passages is a good solution for supermarket managers in
balancing infection risk while maintaining average through-
put.

4.4. Trade-off between exposure risk and shopping effi-
ciency

As discussed above, social distancing, a long shopping
schedule, and a one-way system can all reduce the exposure
of each agent to others. However, these measures reduce the
shopping efficiency of agents of varying degrees. Therefore,
it is worth developing a strategy that can take agents’ expo-
sure risk and shopping efficiency into consideration simulta-
neously.

In this work, we introduce a ranking R, which scores each
scenario in terms of minimizing exposure risk while maximiz-
ing shopping efficiency. R is given by

R = αĜ+(1−α)ε, (11)

where Ĝ is the inverse-normalized exposure risk per activ-
ity per hour such that the exposure risk decreases as Ĝ in-
creases. ε is shopping efficiency normalized by dividing all
shopping efficiencies by the maximum observed shopping effi-
ciency across scenarios. α is a parameter capturing the relative
weighting of the exposure risk and ranges from 0 to 1. When
this parameter is 0, it means agents only care about completing
their shopping quickly. When α is 1, agents only care about
minimizing their exposure risk.

Figure 5 shows the ranking strategies according to the im-
portance of exposure. The strategy with the highest R at any
given value of α is the optimal one in terms of balancing ex-
posure risk with shopping efficiency. The wide one-way sys-
tem is the best strategy, reducing exposure risk while main-
taining shopping efficiency for all values of α . This implies
that implementing one-way systems with passageways wide
enough for people to move past each other while obeying so-
cial distancing is the ideal strategy for supermarket managers,
who would need to implement measures for reducing exposure
without compromising store turnover. This is followed closely
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by the narrow one-way system, except for α = 0, where free-
for-all with no social distancing higher in rank. However, this
assumes that all agents strictly obey the rule of the one-way
system, and therefore shows the theoretical result if everyone
always obeys the one-way system. As for social distancing, it
depends on the customer’s motivation, for example, if a cus-
tomer is more concerned about minimizing the risk of infec-
tion, then they should obey social distancing rules, with larger
distances providing more safety. Of course, this assumes that
everyone is always equally compliant with social distancing.
Finally, customers should shop less frequently but buy more
when they do, as the long schedule has both a lower exposure
risk and higher shopping efficiency during a situation where
social distancing restrictions are in place.
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Fig. 5. Ranking strategies as the weight of the exposure risk changes. The
strategy with the highest ranking for a given exposure risk weighting is the
optimal strategy for shoppers.

5. Discussion
This work aims to develop the optimal strategy for mini-

mizing the exposure risk of people to disease while maximiz-
ing the shopping efficiency of customers in supermarkets dur-
ing a pandemic. We propose an integrated agent-based simu-
lator which can model both the decision behavior and move-
ment of people. Agents make decisions on where to go next
using a discrete choice model based only on their schedule
of desired activities. Step-by-step locomotion is described by
a force-based model. We implement social distance restric-
tions between agents by varying a parameter in the force-based
model. A recent disease exposure model[21] is used to assess
the exposure risk of shoppers in a supermarket environment.
Two kinds of disease transmission are considered, based on
known transmission routes of COVID-19:[24] social distance
and face-to-face contact.

We use our simulator to investigate several measures
taken to slow down the spread of COVID-19 in supermarkets.
These measures are social distancing (≥ 1 m), and one-way
systems. However, these measures are likely to make it harder
for shoppers to complete their shopping quickly, so the im-
pact of these protective measures on shopping efficiency is
also considered. We also investigate how shopping habits of

customers impact their exposure risk, comparing the strate-
gies where customers visit supermarkets less often but spend
more time shopping, and the other where customers visit fre-
quently but spend less time shopping. We rank these measures
in terms of exposure risk and shopping efficiency to find the
optimal shopping strategy during a pandemic.

Our results confirm previous work[22] that the following
government and general health guidelines can reduce the ex-
posure risk of people to disease at the cost of the speed and
ease of shopping. This work shows that supermarket man-
agers should adopt one-way systems as they lower customers’
exposure risk while preserving turnover, if the passageways
are wide enough to allow for customers to move past each
other while obeying any other social distancing restrictions.
Narrowing the passageways of a one-way system to prevent
people passing each other does not decrease overall exposure
but does decrease shopping efficiency, so one-way systems
should be deployed in stores whose layouts allow for wide
passageways. One-way systems could be particularly effec-
tive in places where the culture and attitude of people im-
prove compliance to restrictions. For the customers interested
in minimizing their exposure to disease, reducing the number
of shopping trips but buying more is the optimal strategy, and
provides a more efficient use of time, compared to short, fre-
quent store visits. This could be particularly useful in places
where people are less likely to obey restrictions, as concerned
individuals can benefit from this strategy even if others do not
follow disease-prevention measures.

We use simulations of our proposed model to illustrate
the consequences of various measures taken by customers and
supermarket managers in terms of exposure risk and shopping
efficiency. Although we simplify the scenarios and only con-
sider a few possible factors in disease transmission and cus-
tomer behavior, we believe that it can achieve reasonable and
intuitive results. However, further validation in more complex
scenarios is still needed.

Although some of these results are intuitive, they show
that even a simple pedestrian dynamic simulator shows great
potential to provide decision-makers and business owners with
helpful information to predict infection risks and customer
turnover. Of course, there are several limitations to this work
that could provide several avenues for future research.

These include potentially unrealistic assumptions about
the behavior of shoppers, for example we assume that cus-
tomers always obey restrictions all of the time, and that peo-
ple choose their next destination based only on a pre-defined
‘schedule’, whereas in reality, many factors could be impor-
tant, such as distance traveled. Other behaviors could be in-
cluded, such as impulse stops, which could be particularly
disruptive for one-way systems and reduce their efficacy in
both reducing exposure risk and shopping efficiency. The sim-
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ulated environments could also be expanded to include areas
such as checkouts and promotional stands, all of which could
influence the amount of time spent in the supermarket and the
extent of agent interactions. Perhaps using an environment
based on the floorplan of a real supermarket would provide a
more realistic setting. Validating these results with empirical
data from current or previous pandemics would also be use-
ful to do in the future. These are in addition to the limitations
mentioned in previous sections.

Microscopic pedestrian dynamics simulations could pro-
vide reliable and accurate quantitative forecasts for disease
transmission, average shopping times, and many other met-
rics of pedestrian behavior, not just for this current pandemic,
but any similar events in the future.
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