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Cell migration in anisotropic microenvironment plays an important role in the development of normal tissues and
organs as well as neoplasm progression, e.g., osteogenic differentiation of embryonic stem cells was facilitated on stiffer
substrates, indicating that the mechanical signals greatly affect both early and terminal differentiation of embryonic stem
cells. However, the effect of anisotropy on cell migration dynamics, in particular, in terms of acceleration profiles which is
important for recognizing dynamics modes of cell migration and analyzing the regulation mechanisms of microenvironment
in mechanical signal transmission, has not been systematically investigated. In this work, we firstly rigorously investigate
and quantify the differences between persistent random walk and anisotropic persistent random walk models based on the
analysis of cell migration trajectories and velocity auto-covariance function, both qualitatively and quantitatively. Sec-
ondly, we introduce the concepts of positive and negative anisotropy based on the motility parameters to study the effect
of anisotropy on acceleration profiles, especially the nonlinear decrease and non-monotonic behaviors. We particularly
elaborate and discuss the mechanisms, and physical insights of non-monotonic behaviors in the case of positive anisotropy,
focusing on the force exerted on migrating cells. Finally, we analyze two types of in vitro cell migration experiments
and verify the universality of nonlinear decrease and the consistence of non-monotonic behaviors with numerical results.
We conclude that the anisotropy of microenvironment is the cause of the non-monotonic and nonlinear dynamics, and the
anisotropic persistent random walk can be as a suitable tool to analyze in vitro cell migration with different combinations of
motility parameters. Our analysis provides new insights into the dynamics of cell migration in complex microenvironment,
which also has implications in tissue engineering and cancer research.

Keywords: cell migration, nonlinear behavior, motility parameter, acceleration profile, anisotropic microenvi-
ronment
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1. Introduction
Cell migration[1,2] is a basic process, which is essen-

tial for the normal development of tissues and organs.[3] In
particular, a wide range of physiological and pathological
processes are involved in cell migration, such as immuno-
logical responses,[4] wound healing,[5–7] embryogenesis,[8–11]

nervous development.[9,10] However, governed rigorously by
complex intra-cellular signaling pathways (ICSP)[12–16] and
the extra-cellular matrix (ECM),[2,17–21,23,24] the ill-regulated
cell migration leads to many human diseases,[25] among which
cancer[26] is the most representative.

As a ubiquitous phenomenon in biology,[1,2] cell migra-
tion has been one of the research hotspots, which attracts a

lot of attention from mathematicians, physicists and biolo-
gists in the past several decades. Initially, cell migration is
only viewed as random walk,[27] which is also referred to as
Brownian motion.[28,29] For example, the motility of bacte-
ria and eukaryotic cells in the absence of symmetry-breaking
gradients.[30,31] Based on Brownian motion, researchers pro-
posed a persistent random walk model (PRW),[32–35] which
is highly effective to characterize isotropic cell movement in
two-dimensional (2D) ECM. The PRW model obeys the fol-
lowing Langevin equation:[29,36,37]

d𝑣
dt

=− 1
P
𝑣+

S√
P
·W̃ , (1)

where W̃ ∼ N (0,1) is the normalized “white noise” , 𝑣 is the
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migration velocity vector, P is the persistence time, and S is the
migration speed of the Ornstein–Uhlenbeck (OU) process.[28]

Especially, to study the phenomenon that three-dimensional
(3D) cell migration does not follow a random walk, a persis-
tent random walk incorporated with cell heterogeneity and lo-
cal anisotropy has been proposed, i.e., anisotropic persistent
random walk (APRW).

In recent years, micropatterning techniques have been
greatly developed, which make it possible to confine cells
to a patterned geometry and further study the confined dy-
namics of cell migration. For example, an elastomeric stamp
was used to create islands of defined shape, confining cells
in predetermined locations and arrays.[38] By analyzing the
switch of Human and bovine capillary endothelial cells from
growth to apoptosis on micropatterned substrates, a funda-
mental mechanism for developmental regulation had been rep-
resented to explain the role of local geometric patterns in
regulating cell growth and viability.[39] In addition, the spe-
cific micropatterns and statistical analysis of cell compart-
ment positions indicate that ECM geometry can determine
the orientation of cell polarity and also plays an important
role in developmental process.[40] Moreover, other geometries
have been manufactured, e.g., one-dimentional tracks,[41,42]

microratchets,[43,44] micro-structural channel arrays,[45,46] and
two-state micropatterns,[23,47,48] etc., in which cell migration
experiments can be performed and useful measures such as
cell migration speed and persistence (time) can be extracted to
quantify cell motility.[49–51]

Except for the micropatterned geometries, some in vitro
cell migration experiments have been performed to study the
role of ECM in determining the behaviors of cell migration.[52]

For example, the persistence-driven durokinesis has been ob-
served, which states that cells behave differently on substrates
with different rigidities, i.e., cell migration is more persis-
tent on stiffer substrates.[53] Different from the substrates, an-
other crucial component is collagen fibers in ECM, which
also greatly affects the behaviors of cell migration.[54,55,57–59]

For example, aligned collagen fibers can guide MAD-MB-231
breast cancer cells to invade into rigid matrigel in a constructed
ECM,[60] as well as the invasion of cell into 3D funnel-like
matrigel interface in a micro-fabricated biochip.[22]

Although a lot of works including numerical simulations
and in vitro cell experiments, have been done to study the na-
ture of cell migration in complex ECM,[20] few works are in-
volved in the effects of anisotropy of ECM on cell migration
dynamics in term of acceleration profiles. In this work, we in-
troduce the PRW and APRW models to simulate cell migration
in anisotropic ECM[61,62] and study the role of anisotropy in
regulating cell migration, e.g., nonlinear and non-monotonic
dynamics, by numerical simulations and in vitro cell exper-
iments. The results illustrate that the anisotropy is univer-
sal in complex ECM, which can be incorporated into per-

sistent random walk model to describe in vitro migration of
Dictyostelium discoideum and MCF-10A mammary epithelial
cells on 3D collagen gel, to some extent.

The rest of the paper is organized as follows. In Section 2,
we apply both quantitative and qualitative approaches to an-
alyze the differences between cell migrations simulated by
PRW and APRW models in numerical simulations, especially
the analysis of velocity auto-covariance function. In Section 3,
we compute and analyze acceleration profiles, exploring the
effects of different combinations of motility parameters on cell
dynamics based on phase diagram. We also discuss the mech-
anisms and physical insights of the non-monotonic behaviors,
combining with the force exerted on migrating cells. In Sec-
tion 4, we perform in vitro cell migration experiments, and
verify universality of nonlinear dynamics and the consistence
of non-monotonic behaviors with the results from numerical
simulations by fitted motility parameters. Conclusions and
discussion are given in Section 5.

2. Two dynamics models describing cell migra-
tion
In this section, we aim to introduce two dynamics mod-

els describing cell migration in anisotropic ECM. One is the
persistent random walk model (PRW), and another is the
anisotropic persistent random walk model (APRW). After ap-
plying these two models to generate cell migration trajectories
in the x–y plane, we initially investigate the differences of cell
migration properties due to the differences of ECM.

2.1. Isotropic persistent random walk model

In the past several decades, many of physical models have
been developed by researchers to characterize cell migration
in certain circumstances. Especially, the inspired PRW model
plays an important role and is governed by Eq. (1) in the form
of velocity components, as follows:

d𝑣x

dt
=− 1

Px
𝑣x +

Sx√
Px
·W̃ , (2)

d𝑣y

dt
=− 1

Py
𝑣y +

Sy√
Py
·W̃ , (3)

where Px, Py, Sx, and Sy are persistence times and migration
speeds, respectively on the x and y axes, all of them are used
to quantify cell migration capability. The displacements dur-
ing cell migration in each time step of ∆t are defined as

∆x(t,∆t) = αx ·∆x(t−∆t,∆t)+Fx ·W̃ , (4)

∆y(t,∆t) = αy ·∆y(t−∆t,∆t)+Fy ·W̃ , (5)

where ∆x and ∆y are the displacements of cell location on the
x and y axes, and the terms αx, αy, Fx, and Fy are memory
factors and noise amplitudes, respectively, they are given by

αx = 1− ∆t
Px

, αy = 1− ∆t
Py

, (6)
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Fx =

√
S2

x∆t3

Px
, Fy =

√
S2

y∆t3

Py
. (7)

The PRW model above [c f . Eqs. (2)–(7)] has been widely
used to describe the isotropic cell movement in 2D ECM,
which denotes that the abilities of cells to move are the same
for all directions, there is no preferential direction. Note that
the PRW model exhibits a significant characteristic that the ve-
locity auto-correlation function (VACF)[21,63] has the follow-
ing form:

〈VACF(τ)〉= nD
P

e−τP, (8)

where n is the dimension of ECM in which cell migrates,
which can be set as 1, 2 or 3. τ is the time lag between any
two frames of cell trajectory. D is the diffusion coefficient,
which is related to persistence time P and migration speed S, as
demonstrated in Ref. [61]. The above VACF indicates that the
cell’s memory of past velocities satisfies a single-exponential
decay. When taking a limit of time lag τ (e.g., infinite), cells
can barely remember past velocities, which means that cell
migration behaves like the random walk.

After integrating the velocity auto-covariance function
twice, we can gain an expression for the mean-square displace-
ment (MSD),[64] as follows:

MSD(τ) = nS2P2
(

e−τ/P +
τ

P
−1
)
, (9)

where n, S, and P are the same as those in Eqs. (1) and (8).

2.2. Anisotropic persistent random walk model

Unfortunately, although the PRW model exhibits good
performance in describing cell migration in isotropic ECM,
it is not appropriate to characterize cell migration in 3D ECM.
Differing from 2D cell migration, the 3D cell migration dis-
plays high anisotropy, which is mainly caused by the effec-
tive substrate stiffness and the physical properties of 3D ECM,
e.g., collagen fibers and pore size. The former indicates that
cell imaging direction relative to substrate plane will lead to
differently persistent migration trajectories, i.e. the persistence
reaches maximal value when the direction is perpendicular to
the plane, while the latter will affect the local properties of
trajectory, producing the time-varying characteristics different
from the 2D migration. In order to address inappropriateness,
Wu et al. considered the anisotropy of 3D ECM and proposed
the anisotropic persistent random walk model (APRW), see
details in Ref. [63]. In numerical simulations, we make motil-
ity parameters (Px and Sx) on the x axis differ from the coun-
terparts (Py and Sy) on the y axis, corresponding to anisotropic
migration.

To explore mechanisms of cell migration in anisotropic
ECM, we present comparisons of results obtained from PRW
and APRW models, as shown in Fig. 1. Firstly, we simulate

cell migration in x–y plane by using the two models above,
in which the sampling time is 1 min. Note that we do not
consider the effect of localization error (σpos), because the lo-
calization error does not affect the nature of cell migration.
Obviously, the migration trajectories [c f . Figs. 1(a) and 1(d)]
display qualitatively differences, i.e., the trajectory simulated
by APRW covers a greater territory in x axis than that in y axis,
while the trajectory simulated by PRW almost covers the same
territories for x and y axes, according to the scales of axis. In
other words, the trajectory simulated by APRW has a prefer-
able direction, which is a direct proof of anisotropy, differing
from the isotropic case (PRW).

Furthermore, we compute instantaneous velocity compo-
nents vx and vy by applying the formula 𝑣 = d𝑟/dt (averaged
distance every 1 min). The resulting velocity components are
exhibited by histograms, as indicated in Figs. 1(b) and 1(e).
Clearly, the distribution of vx [upper panel in Fig. 1(b)] is
nearly same as that of vy [lower panel in Fig. 1(b)], both of
them can be fitted by normal Gaussian distributions (see the
black lines). The red arrows mark the points of 0 µm/min, cor-
responding to the peaks of these distributions, which indicate
these distributions are symmetry and possess the same proba-
bilities for cell to move forward and backward. The analysis
of velocity illustrates that cell migration simulated by PRW is
consistent with the OU process, to some extent. Similarly, the
counterparts [c f . Fig. 1(e)] calculated from APRW also satisfy
normal Gaussian distributions with mean values of 0 µm/min,
but with a larger difference on the values of variance, which
is the consequence of the anisotropic motility parameters in
APRW model. Thus, the cell migration in x or y axis meets
the OU process, and can be described by different PRW mod-
els.

For gaining more insights into the effect of anisotropy on
cell migration, we introduce an approach to compute velocity
auto-covariance function (VAC),[65] based on velocity compo-
nents, see details in Figs. 1(c) and 1(f). The black points rep-
resent the values of VAC, and the colored dotted lines are aux-
iliary in log–lin axis, indicating exponential decays in lin–lin
axis. Interestingly, we discover an obvious difference in VAC
profiles, i.e., the VAC profile follows a single-exponential de-
cay (linearity in log–lin axis) for isotropic case [red dashed
line in Fig. 1(c)], while a double-exponential decay (nonlin-
earity in log–lin axis) for anisotropic case [red and blue dashed
lines in Fig. 1(f)]. There is no doubt that the nonlinear behav-
ior contains two migration modes: one is quantified by pa-
rameters Px and Sx, while another is quantified by Py and Sy,
which are consistent with the results obtained from Fig. 1(e),
i.e., cell migration in x or y axis satisfies PRW model with
different motility parameters. Further, one has access to more
insights into the double-exponential behavior by referring to
Ref. [61].
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Fig. 1. Comparisons of cell migration simulated by PRW and APRW models. (a) Trajectory starting at the origin (0, 0) in x–y plane and sampled with
time interval ∆t = 1 min. The number of recorded frames is N + 1 = 10001 (black line). The migration trajectory is simulated by PRW model with
a set of parameters (Px = Py = 10 min, Sx = Sy = 0.5 µm/min). (b) Distributions of velocity components (red for vx and blue for vy). The migration
velocity can be computed from formula 𝑣 = d𝑟/dt. (c) Velocity auto-covariance function (black points) based on PRW model. (d)–(f) The captions are
corresponding to panels (a)–(c), but the migration trajectory in panel (d) is simulated by APRW model with a set of parameters (Px = 10 min, Py = 1 min,
Sx = 1.0 µm/min, Sy = 0.5 µm/min). The colored dashed lines are auxiliary, and each color corresponds to a single-exponential decay.

3. Anisotropy of ECM triggers the nonlinear cell
dynamics
To investigate the effect of anisotropy on cell migration,

we apply formula 𝑎 = d𝑣/dt to compute the acceleration in
different manners, as a function of instantaneous velocity. By
analyzing the acceleration profiles, we investigate the role of
anisotropy in regulating cell migration dynamics in anisotropic
ECM.

3.1. Linear cell dynamics

In Fig. 1, we analyze the cell migration simulated by
PRW and APRW models, and find the latter is consistent with
OU process to some extent, and anisotropy does affect cell be-
havior. To explore the mystery of cell dynamics and verify the
effect in other aspects, we firstly compute acceleration compo-
nents ax and ay based on the isotropic trajectory in Fig. 1(a).
The scatter diagrams [c f . Fig. 2(a)] of acceleration compo-
nents ax and ay are plotted against the corresponding velocity
components vx and vy, respectively. The corresponding bin-
averaged acceleration components in Fig. 2(b) show that they
decrease linearly as the velocity components increase. Further,
the statistical histograms of the acceleration components also
manifest that both of the acceleration components are fitted
well by the Gaussian distributions with mean values smaller
than 0 µm/min2, as shown in Fig. 2(c). With the same mean-
ings, the red arrows mark the points of 0 µm/min2, and it is ob-
vious that the peaks of the Gaussian distributions are slightly

smaller than 0 µm/min2, corresponding to the decreasing neg-
ative accelerations in Fig. 2(b).

Next, we explore the relationship between acceleration
components parallel and orthogonal to velocity, respectively.
The acceleration components ap and ao scattered in Fig. 2(d)
are generated as follows: (i) picking any two successive ve-
locities computed from cell migration trajectory, (ii) comput-
ing the components of second velocity relative to the first ve-
locity, (iii) calculating acceleration components parallel and
orthogonal to the first velocity, and (iv) plotting acceleration
components scatters against migration velocity.

The bin-averaged acceleration components ap and ao in
Fig. 2(e) clearly show that they are subject to different trends
as the velocity increases. The bin-averaged ao hardly varies
with the velocity and have a mean value of 0 µm/min2, while
the bin-averaged ap linearly decreases with the increase of ve-
locity. Note that the fluctuation of bin-averaged acceleration
components corresponding to high velocity, e.g., the interval
1.25 µm/min ∼ 2.0 µm/min in Fig. 2(e), is due to the small
sample size [see the sparse points in Figs. 2(a) and 2(d)]. This
linear decreasing behavior [c f . Fig. 2(e)] is a characteristic of
OU model, as indicated in Eq. (10). It is clear that cell acceler-
ation is a random vector for any time t, because of the presence
of Gaussian white noise. What is more, the random vector has
an expectation value, as follows:

〈𝑎v〉𝑣 =

〈
d𝑣
dt

〉
𝑣

=− 1
P
𝑣, (10)
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which characterizes the linear decreasing behavior in Fig. 2(e)
and its component forms also describe the same behaviors in
Fig. 2(b). The term −1/P is the slope of expectation value,
and it determines how fast the acceleration component ap lin-

early decreases. In Fig. 2(f), the distribution of ap is asym-
metric and the mean value of the distribution is smaller than
0 µm/min2, which differs from that for ao, but is the same as
those in Fig. 2(c).
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Fig. 2. Linear dynamics of cell migration in isotropic ECM. (a) The computed acceleration components parallel to x axis (red for ax) and
parallel to y axis (blue for ay), plotted against cell migration velocity components (vx and vy). (b) The bin-averaged acceleration components as
functions of migration velocity components (vx and vy). (c) Distributions of acceleration components ax and ay. (d) The computed acceleration
components parallel (red for ap) and orthogonal (blue for ao) to the cell migration velocity, plotted against cell migration velocity (v). (e) The
bin-averaged acceleration components, as functions of migration velocity. (f) Distributions of acceleration components ap and ao.

3.2. Nonlinear cell dynamics

In what follows, we continue to analyze anisotropic cell
migration dynamics in the same manner as that applied in
isotropic case. Here, the analysis of cell dynamics is based on
the anisotropic trajectory shown in Fig. 1(d), and the resulting

calculations are displayed in Fig. 3. Note that the distributions
of acceleration components ax and ay still satisfy Gaussian dis-
tributions with mean values smaller than 0 µm/min2, despite
the large difference between these two scatter diagrams in high
velocity domain.
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There is an interesting phenomenon that the bin-averaged
acceleration component ap decrease nonlinearly over the ve-
locity in Fig. 3(e), which differs from the linear decrease in
Fig. 2(e). Thus, we argue that the anisotropy of ECM is the
cause of nonlinearity in acceleration component ap. Further, it
is attractive that both the one-dimensional (1D) migrations on
the x and y directions are consistent with OU process, but the
resultant motion of these two 1D migrations exhibits a novel
property, which is different from that predicted by OU process.

In contrast to the expectation value described by Eq. (10)
for the PRW model, we deduce the similar relationship on the
x and y axes for the APRW model, which is defined as follows:

〈𝑎v〉𝑣 =

〈
d𝑣
dt

〉
𝑣

=− 1
Px
𝑣x−

1
Py
𝑣y. (11)

This expression indicates that the acceleration component in
individual x or y direction follows a linear decrease, but a non-
linear decrease for the resultant motion. Here, the nonlinearity
is mainly the consequence of different values of Px and Py.

3.3. The effect of anisotropy on cell dynamics

In this section, we perform several control simulations
about cell migration to study how the acceleration component
ap changes for different combinations of parameter values. To
better quantify the anisotropy of ECM, we introduce a quan-
tity, i.e., anisotropy index Φ ,[61] which can be written as

Φ = max

{
Px ·S2

x

Py ·S2
y
,

Py ·S2
y

Px ·S2
x

}
. (12)

Furthermore, we also define anisotropy index of persistence
time and migration speed, separately. They are given as fol-
lows:

ΦP = max
{

Px

Py
,

Py

Px

}
, (13)

ΦS = max

{
S2

x

S2
y
,

S2
y

S2
x

}
. (14)

Clearly, all the indexes are dimensionless values and greater
than unity. Due to the inspiration of anisotropy index, we de-
fine two concepts based on the motility parameters, i.e., pos-
itive anisotropy (PA) and negative anisotropy (NA). The de-
tail definition as follows: if the persistence time and migration
speed in one direction (such as x axis), are greater than the val-
ues in another direction (such as y axis), respectively, then we
refer the case to as positive anisotropy, otherwise it is negative
anisotropy.

In Fig. 4, we aim to explore how the acceleration compo-
nent ap changes in the cases of positive anisotropy and nega-
tive anisotropy. Firstly, we investigate the effect of ΦP when

Sx = Sy. As the increase of ΦP from 2.5 to 20.0, the ap pro-
files become more nonlinear, corresponding to the tendency of
downward concave, as shown in Fig. 4(a). Based on the values
of motility parameters in Fig. 4(a), we just modify the values
of migration speed, and make Sx greater than Sy (PA). The
ap profiles become more interesting [c f . Fig. 4(b)] because
of a non-monotonic behavior that the values of ap increase as
the increase of velocity, in the context of downward concave.
See Fig. 6 for more details about this non-monotonic behav-
ior. Similarly, we make Sx less than Sy (NA), and keep other
parameters constant [c f . Fig. 4(c)]. The ap profiles change
the ways they decrease, and produce the tendency of upward
convex.

In a similar manner, we analyze the effect of ΦS on the
ways ap profiles decrease. In Fig. 4(d), we make Px = Py, and
increase the values of ΦS from 1.6 to 25.0. The ap profiles
clearly show that the increase of ΦS does not change the lin-
earity of profiles, but the scale of profiles. When adjusting
the values of persistence time and make Px greater than Py

(PA), the ap profile becomes nonlinear, forming the tendency
of downward concave. As a whole, all ap profiles in Fig. 4(e)
almost have the same tendencies, but with different scales. It
means that the ΦS only changes the scale of profile, not the
way ap profile decreases. For the case of Px less than Py (NA)
in Fig. 4(f), all ap profiles almost obey the tendency of upward
convex.

To vividly exhibit the transition of ap profiles induced by
anisotropic motility parameters, we calculate the phase dia-
gram of ap behaviors following the procedures:

(i) referring the line segments formed by points in ap pro-
file to as vectors;

(ii) computing the angle between any two vectors;
(iii) multiplying +1 and the angle when the second vector

is biased to the right relative to the first vector (i.e., tendency
of upward convex), otherwise multiplying −1 and the angle
(i.e., tendency of downward concave);

(iv) averaging the angles and plotting the phase diagram,
as seen in Fig. 5.

Obviously, there are four sections in this figure, i.e., left-
top, left-bottom, right-top, and right-bottom. Left-top and
right-bottom are almost represented by positive angles (red),
which denotes that the corresponding ap profiles possess the
tendencies of upward convex. Meanwhile, the left-bottom and
right-top are almost represented by negative angles (blue), in-
dicating ap profiles possess the tendencies of downward con-
cave. In addition, the averaged angles for Px/Py = 1 slightly
deviate from the theoretical value 0, which is the consequence
of limited data.
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Thus, we can conclude that firstly, regardless of the values
of migration speed, the anisotropy of persistence time leads to
the nonlinear ap profiles, see Fig. 4 [except for panel (d)]. Sec-
ondly, the positive anisotropy produces the tendency of down-
ward concave in the case where ΦP is small, while the nega-
tive anisotropy produces the tendency of upward convex, see
Figs. 4(b)–4(c) and 4(e)–4(f). Especially the non-monotonic
behavior occurs as the increase of ΦP, in the case of posi-
tive anisotropy [see gray and red lines in Fig. 4(b)]. Then,
increasing the anisotropy of persistence time facilitates ap pro-
file to be more nonlinear, in the cases of positive and nega-
tive anisotropy, see Figs. 4(b) and 4(c). Finally, increasing

the anisotropy of migration speed only changes the scale of
ap profile, not the way it decreases, see Figs. 4(e) and 4(f).
The phase diagram in Fig. 5 also validates that the anisotropic
motility parameters (or ECM) will affect the nonlinear dynam-
ics of cell migration.

3.4. Non-monotonic cell dynamics in anisotropic ECM

In Fig. 4(b), we discover that a non-monotonic behavior
occurs in ap profile in the case of positive anisotropy, espe-
cially for a large anisotropy of persistence time (ΦP). In what
follows, we explicitly regulate the ΦP to study how the non-
monotonic behavior changes in the case of positive anisotropy.

To capture the major changes of ap profile, we mark two
representative points in ap profile, which are concave and con-
vex, respectively. One is viewed as valley, while another is
viewed as peak, as indicated in Fig. 6(a). We increase the val-
ues of Py from 0.15 min to 2.15 min, for a given set of param-
eters (Px = 20 min, Sx = 1.0 µm/min, and Sy = 0.5 µm/min).
Note that the ΦP ranges from 133.3 to 9.3 when ΦS = 2. As
the value of Py increases, the abscissa (blue scatters) of the val-
ley increases stepwise. The three speed domains correspond
to 0.15 min ∼ 0.5 min, 0.5 min ∼ 1.25 min, and 1.25 min
∼ 2.15 min, respectively, as indicated by the black ladder in
Fig. 6(b). However, the abscissa (red scatters) of the peak
undergoes two steps, first increases and then decreases. In
contrast to the way the abscissa changes, both the ordinates
of the valley and the peak experience a “roller coaster”, i.e.,
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first decrease, then increase, and finally reach the same value,
as demonstrated in Fig. 6(c). The roller coaster implies two
events, one is the appearance of non-monotonic behavior, and
another is the disappearance of non-monotonic behavior.

To gain more insights into the relationship between the
anisotropy of persistence time and the non-monotonic behav-
ior, we study the rectangle with the valley and peak as ver-
texes, and its orthogonal sides are parallel to the x and y axes,
respectively, see the dotted lines in Fig. 6(a). Figures 6(d)–6(f)
manifest that the distances between valley and peak on the x
and y directions and the corresponding area obey the tendency,
i.e., increase first and then decrease. Thus, we obtain an over-
all picture about the changes of ap profile when changing the
anisotropy of persistence time.

The non-monotonic behavior signifies that the ap profile
is not a monotonically decreasing function of velocity, but
contains an interval where the values of ap increase. Here,

we argue that, the increasing part clearly hints that the net
force on the cell gradually decreases, as the velocity increases.
Thus, we can deduce the force exerted on cell during migra-
tion, which is given as

F∗ = Fr−Fd, (15)

where Fd is the force that drives the cell forward, Fr is the force
that impedes cell migration, and F∗ is the net force. The above
equation (15) is analogous to Eq. (1), the Gaussian white noise
corresponds to Fd, while −𝑣/P corresponds to Fr. Consider-
ing that the Gaussian white noise can be viewed as constant in
the regime of long time scale, thus the term Fr will lead to the
changes in ap profile, especially non-monotonic behavior. The
behavior indicates that the greater the velocity of one cell, the
less the resistance it will experience, which does not conform
to the widely accepted law, i.e., the greater the velocity of a
body, the greater the resistance it will experience.
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4. Nonlinear dynamics for in vitro cell migration

We have analyzed the effect of anisotropy on cell migra-
tion dynamics based on numerical simulations, i.e., discussing
the changes in acceleration profiles, and find there is a non-
monotonic behavior that acceleration component ap gradually
increases in a certain velocity interval. In this section, we ana-
lyze the in vitro cell migration experiments and verify the uni-
versality of nonlinear and non-monotonic behaviors and the
consistence with the results predicted by APRW model by fit-
ted motility parameters.

4.1. The non-monotonic behavior for Dictyostelium dis-
coideum

In this part, we follow the procedure used above to an-
alyze in vitro experimental data, which are obtained from
Ref. [15]. Note that the authors analyzed the role of Arpin pro-
tein in regulating the directionality of cell migration, we only
choose the migration data for wild-type (WT) Dictyostelium
discoideum. The corresponding results are shown in Fig. 7.

We firstly compute the acceleration components ap and
ao, which are shown in Figs. 7(a) and 7(c). On the basis of the
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acceleration scatter diagrams, we bin-averaged the ap and ao,
respectively, as indicated in Figs. 7(b) and 7(d). The ap pro-
file also exhibits the non-monotonic behavior, i.e., there is an
non-monotonic part where the ap profile gradually increases
as the velocity increases. The non-monotonic behavior is al-
most identical with that shown in Fig. 6(a). Especially, the ao

profile fluctuates around at 0 µm/min2, which is close to the
results shown in Figs. 2 and 3.

In addition, we also compute VAC and MSD, as indicated
in Figs. 7(e) and 7(f). The VAC obeys a nonlinear exponential
decay in log–lin axis, which mainly contains two migration
modes, one is marked by red dotted line and another is marked
by blue dotted line. Here, the nonlinear VAC is consistent
with that in Fig. 1(f). Following the procedure in Ref. [61],
we fit the calculated VAC with the superimposed form of the-
oretical formula defined in Refs. [51,65] and obtain the fit-
ted VAC and the corresponding motility parameters, as seen in
Fig. 7(e). The fitted motility parameters are P1 = 0.339 min,

S1 = 6.245 µm/min, P2 = 0.036 min, S2 = 4.913 µm/min, re-
spectively, which satisfies the criteria of positive anisotropy
because of P1 > P2, S1 > S2. In addition, the MSD in Fig. 7(f)
lies at the interval ranging from the red line with a slope 2 to
the blue line with a slope 1, which illustrates that the migra-
tion of Dictyostelium discoideum can be described by persis-
tent walk model, e.g., PRW or APRW model to some extent.
The MSD also exhibits distinguishable behaviors at different
time scales, i.e., it grows quadratically just like ballistic mo-
tion in the regime of short lag-times (< 0.8 min), while grows
linearly just like pure Brownian motion in the regime of long
lag-times (> 0.8 min), thus there must be a point reflecting
the ensemble-average characteristics of cell migration. More-
over, in the regime of short lag-times, the MSD gradually devi-
ates from the ballistic motion, which indicates that cell grad-
ually loses the memory of the past velocities as the lag-time
increases.
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Based on the analysis above, it is reasonable to conclude

that: (i) the migration of wild-type Dictyostelium discoideum,

at least can be described by APRW model because of the non-

linear VAC and the non-monotonic acceleration ap; (ii) the

non-monotonic behavior in acceleration profile illustrates that

motility parameters meet the condition of positive anisotropy

and there is a greater difference between two persistence times

(high anisotropy); (ii) the fitted motility parameters fitted from

VAC do validate the consistence with the results from APRW

model.

4.2. The nonlinear behavior for MCF-10A mammary ep-
ithelial cells migration on 3D collagen gel

To verify the universality of the nonlinear cell dynamics
and the consistence with the numerical results, we analyze the
in vitro cell migration data, i.e., MCF-10A mammary epithe-
lial cells migration on 3D collagen gel, see more detail exper-
imental procedures in Ref. [50]. We perform the same calcu-
lations and obtain the corresponding results in Fig. 8.
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When compared with results in Fig. 7, we find the
VAC and MSD [c f . Figs. 8(e) and 8(f)] obey the same ten-
dencies with those for wild-type Dictyostelium discoideum.
The only difference is that the ap profile shows no non-
monotonic behavior, but nonlinear, which is similar with that
in Fig. 4(c). Meanwhile, the fitted motility parameters from
VAC are P1 = 19.04 min, S1 = 1.419 µm/min, P2 = 1.925 min,
S2 = 1.647 µm/min, respectively, which satisfies the criteria of
negative anisotropy because of P1 > P2, S1 < S2. Thus, we can
conclude that (i) the migration of MCF-10A mammary epithe-
lial cells on 3D collagen gel also may be described by APRW
model because of the nonlinear VAC and the nonlinear accel-
eration; (ii) the nonlinear behavior indicates that motility pa-
rameters meet the condition of negative anisotropy, which is
further validated by the fitted motility parameters.

5. Discussion and conclusion
In this work, we firstly introduce two models, PRW and

APRW, to analyze the influence of anisotropy of ECM on cell
migration dynamics. Qualitatively, the trajectory pattern sim-
ulated by APRW model is more persistent than that by PRW
model and the persistence is validated by VAC, i.e., the values
of VAC computed from APRW model are greater than those
from PRW model for a given time lag τ . What is more, in con-
trast to the single-exponential decay of VAC computed from
PRW model, the VAC computed from APRW model follows
a double-exponential decay corresponding to two migration
modes. In addition, we find that both distributions of velocity
components on the x and y axes obey normal Gaussian distri-
butions with mean values 0 µm/min, which means that the cell

migration on the x or y axis follows the OU process, to some
extent.

Secondly, we compute the acceleration components, e.g.,
ax, ay, ap, ao, and investigate the distributions of different ac-
celeration components. The results indicate both the accel-
eration components on the x and y axes are linearly decreas-
ing functions of velocity components. This linear decrease
exactly verifies the result mentioned above, i.e., the cell mi-
gration in x or y axis follows the OU process. The acceleration
component parallel to the instantaneous velocity, for PRW and
APRW models, reveals different behaviors. The parallel accel-
eration component ap is still a linearly decreasing function of
velocity for PRW model, but a nonlinearly decreasing func-
tion for APRW model. Furthermore, whether or not the ac-
celeration component deceases, is related to the mean value of
distribution of acceleration component: if acceleration compo-
nent is a decreasing function of velocity, then the mean value
of distribution is smaller than 0 µm/min2, otherwise it equals
0 µm/min2.

Then, to investigate the effects of combinations of motil-
ity parameters, we introduce positive and negative anisotropies
by setting different parameter values in APRW model, and
find that positive anisotropy leads to a downward concave in
ap profile, while negative anisotropy leads to an upward con-
vex based on phase diagram. In particular, the anisotropies of
persistence time and migration speed only influence the non-
linearity and scale of ap profile, respectively. We further dis-
cover that the anisotropy of persistence time results in a non-
monotonic behavior occurring in ap profile in the case of pos-
itive anisotropy.
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Finally, we follow the same procedure to analyze two
types of in vitro cell migration experiments, i.e., the migration
of wild-type Dictyostelium discoideum and MCF-10A mam-
mary epithelial cells migration on 3D collagen gel. The results
indicate that the ap profile for Dictyostelium discoideum show
non-monotonic behavior and that for MCF-10A cells show
nonlinear behavior, which are consistent with the results ob-
tained from APRW model, especially the fitted motility pa-
rameters further validate the consistence.

Our work presents the relationship between the
anisotropy of ECM and cell migration dynamics in term of
acceleration profile, and emphasizes the importance of the
anisotropy during cell migration, especially the VAC follow-
ing a double-exponential decay, the nonlinear decrease and
the non-monotonic behavior of ap profile. We conclude that
the anisotropy of ECM in which cell migrates is the cause of
the non-monotonic and nonlinear dynamics, and the APRW
model can be as a suitable tool to analyze in vitro cell migra-
tion with different combinations of motility parameters. The
work provides new insights into the dynamics of cell migra-
tion in complex ECM, which also has implications in tissue
engineering and cancer research.
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