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We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In
a continuous variable system, we show that the Heisenberg limit 1/N can be beaten by the coherent superposition with-
out the help of indefinite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent
superposition can perform better than the strategy with quantum SWITCH which can generate indefinite causal order. We
analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove
that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as 1/Nm

for m ≥ 2. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection
of coupling strength and the test of time dilation and the modification of the canonical commutation relation.
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1. Introduction
Quantum metrology mainly involves the use of quantum

effects to improve the precision of parameter measurement,
which plays a crucial role in the development of basic science
and technology.[1–9] In classical physics, the best metrology
precision, known as the quantum shot noise limit (SNL), scales
as 1/

√
N with N being the number of resource employed in the

measurements. There are two basic ways to beat the SNL and
arrive at the Heisenberg limit: one is the parallel entangled-
scheme where an entangled state of N probes goes through N
maps U(ϕ) in parallel;[10] the other is the sequential scheme
where the map U(ϕ) acts on one probe N times.

Quantum SWITCH can offer indefinite causal order, which
has potential applications in quantum information, such as
channel discrimination tasks.[11,12] And quantum switches
have also been achieved in photonic systems using superpo-
sitions of paths for discrete variables.[13–15] Recently, some
works showed that quantum SWITCH can increase the quantum
Fisher information. Mukhopadhyay et al.[16] proposed a novel
approach to qubit thermometry using a quantum SWITCH and
showed that indefinite causal order can be used as a metro-
logical resource. Frey[17] analytically obtained the quantum
Fisher information and proved that indefinite causal order can
aid quantum depolarizing channel identification.

More importantly, Zhao et al.[18] demonstrated that quan-
tum SWITCH can obtain super-Heisenberg scaling based on
the sequential scheme in a continuous variable system. They
addressed the comparison with the performances of arbitrary

schemes with definite causal order and proved that the optimal
scaling is 1/N2. However, up to now, the continuous variable
quantum SWITCH has not been realized in experiment. An im-
portant question arises: can super-Heisenberg scaling be ob-
tained without quantum SWITCH?

In this work, we investigate the advantage of coherent
superposition[19] of two different coded channels in quantum
metrology. Without quantum SWITCH, the coherent superpo-
sition can also obtain super-Heisenberg scaling based on the
sequential scheme in a continuous variable system. We also
show that the coherent superposition of two different coded
channels can perform better than the quantum SWITCH.

Moreover, we analytically obtain the general form of
quantum Fisher information and show that nonlinear Hamito-
nian can improve the estimation precision and make the mea-
surement uncertainty scale as 1/Nm for m ≥ 2 based on the se-
quential scheme. Our results reveal that the coherent superpo-
sition and the nonlinearity can provide an important metrolog-
ical resource, which can be applied to conduct high-precision
measurement of coupling strength, the gravitational accelera-
tion and the coefficient from the modification of the canonical
commutation relations.

This article is organized as follows. In Section 2, we in-
troduce the scheme of Quantum SWITCH and the correspond-
ing measurement precision. In Section 3, we obtain the esti-
mation precision with the scheme of coherent superposition of
two different coded channels. In Section 4, quantum Fisher in-
formation with a general nonlinear Hamiltonian is discussed.
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In Section 5, we discuss about the application in conducting
high-precision measurement of coupling strength, the gravita-
tional acceleration and the coefficient from the modification of
the canonical commutation relations. We make a brief conclu-
sion and outlook in Section 6.

2. Quantum switch
Unlike classical physics, the order in which quantum

physics allows events to occur is indefinite. As shown in
Fig. 1, based on the sequential scheme, 2N black boxes can
be accessed, where we consider there are N identical unitary
gates U1 and U2. The quantum SWITCH generates the con-
trolled unitary gate by querying U1 and U2 gates N times each,

S(U⊗N
1 ,U⊗N

2 ) = |0⟩⟨0|⊗U⊗N
1 U⊗N

2 + |1⟩⟨1|⊗U⊗N
2 U⊗N

1 , (1)

where the first register on the right-hand side of Eq. (1) repre-
sents the control qubit. When the qubit is in a superposition
of |0⟩ and |1⟩, a coherent superposition of the two alternative
orders U⊗N

1 U⊗N
2 and U⊗N

2 U⊗N
1 (indefinite casual order) can be

generated.

(Υ1)⊗N

(Υ2)⊗N

Fig. 1. Schematic diagram of quantum SWITCH. A control qubit (such as
beam-splitter) determines the order in which quantum operations U⊗N

1 and
U⊗N

2 are applied to the probe state |φ⟩. Here U⊗N
j represents that the map

U j acts on the probe N times. When the control is in the superposition state
(|0⟩+ |1⟩)/

√
2, there is a superposition of the two orders, generating the

output state (U⊗N
1 U⊗N

2 |0⟩|φ⟩+U⊗N
2 U⊗N

1 |1⟩|φ⟩)/
√

2.

We consider that U1 and U2 are described by

U1 = e−iθ1Ĥ1 , (2)

U2 = e−iθ2Ĥ2 . (3)

In a continuous variable linear system, we consider that
Ĥ1 = X and Ĥ2 = P. X and P are the conjugate operators, sat-
isfying the canonical commutation relation [X ,P] = i (h̄ = 1
throughout this article).

When the control qubit of the quantum SWITCH is in the
state (|0⟩+ |1⟩)/

√
2, we can obtain the quantum Fisher infor-

mation by the formula[20,21]

ℱθ = 4(⟨∂θ ψ|∂θ ψ⟩− |⟨∂θ ψ|ψ⟩|2). (4)

Here, the final output state is

|ψ⟩= (|0⟩+ e−iθ1θ2N2 |1⟩)e−iNθ2P e−iNθ1X |φ⟩/
√

2, (5)

where |φ⟩ is the initial probe state. Substituting Eq. (5) into
Eq. (4), the corresponding quantum Fisher information are
achieved

ℱθ1 = θ
2
2 N4 +4N2⟨φ |δ 2X |φ⟩, (6)

ℱθ2 = θ
2
1 N4 +4N2⟨φ ′|δ 2P|φ ′⟩, (7)

where

|φ ′⟩= e−iNθ1X |φ⟩, ⟨φ |δ 2X |φ⟩= ⟨φ |X2|φ⟩− |⟨φ |X |φ⟩|2.

According to the famous Cramér–Rao bound,[22,23] the esti-
mation precision of θ j ( j = 1,2) can be given in the large ν

limit

δθ1 ≈
1√

ν |θ2|N2 , δθ2 ≈
1√

ν |θ1|N2 , (8)

where ν represents the total number of experiments, and we
consider that Nθ2 ≫ ⟨φ |δ 2X |φ⟩ and Nθ1 ≫ ⟨φ ′|δ 2P|φ ′⟩. We
can see that super-Heisenberg scaling 1/N2 is achieved. This
recovers the similar results in Ref. [18].

3. Coherent superposition of two different coded
channels
In experiment, there are some difficulties in the realiza-

tion of continuous variable quantum SWITCH. We propose
to use the coherent superposition two different coded chan-
nels which does not require quantum SWITCH to obtain high-
precision parameter measurement. As shown in Fig. 2, the
final output state (U⊗2N

+ |0⟩|φ⟩+U⊗2N
− |1⟩|φ⟩)/

√
2 is gener-

ated by the control qubit, which is in the superposition state
(|0⟩+ |1⟩)/

√
2. Here, U2N

± represents that there are 2N identi-
cal unitary gates U±, which are given by

U+ = e−iĤ+ = e−i(θ1Ĥ1+θ2Ĥ2), (9)

U− = e−iĤ− = e−i(θ1Ĥ1−θ2Ĥ2). (10)

It needs to be emphasized that 2N Hamiltonians Ĥ1 and Ĥ2

are used here, while N Hamiltonians Ĥ1 and Ĥ2 are used in
the case of quantum SWITCH. That is because we are consid-
ering the same evolutionary time. Time is also an important
resource for preparing the output state. In the case of quantum
SWITCH, half of the time is wasted due to that Hamiltonian Ĥ1

and Ĥ2 do not evolve simultaneously.

(Υ+)⊗2N

(Υ-)⊗2N

Fig. 2. Schematic diagram of coherent superposition without quantum
SWITCH. When the control is in the superposition state (|0⟩+ |1⟩)/

√
2, there

is a superposition of the two different coded channels, generating the output
state (U⊗2N

+ |0⟩|φ⟩+U⊗2N
− |1⟩|φ⟩)/

√
2.

In a continuous variable linear system, we consider that
the detail Hamiltonian reads Ĥ± = θ1X ± θ2P. For simplic-
ity’s sake, let us just measure θ2 in the next paragraph. Using
Eq. (4), we can obtain the quantum Fisher information of θ2,

ℱθ2 = 16N4
θ

2
2 . (11)

090304-2
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The estimation precision of θ2 can be described as

δθ2 ≃
1

4
√

ν |θ1|N2 , (12)

where we also consider the large ν limit. Comparing Eq. (8)
with Eq. (28), we can see that

δθ2|cs

δθ2|qs
=

1
4
, (13)

where “cs” denotes the coherent superposition and “qs” de-
notes the quantum SWITCH. This shows that the coherent su-
perposition without quantum SWITCH can perform better than
the case with quantum SWITCH in estimating θ2 (the results
are similar for parameter θ1).

More importantly, the strategy of coherent superposition
of two different coded channels can be realized by a simple
Hamiltonian of composite system model

Ĥc = G1X +G2σZP, (14)

where the Pauli operator σZ = |0⟩⟨0| − |1⟩⟨1|. Such Hamil-
tonian can be obtained from a dispersive Jaynes-Cumming
Hamiltonian which has been experimentally shown in super-
conducting circuits[24] or a two-tone drive which has been ex-
perimentally demonstrated in trapped ions.[25,26] With the ini-
tial direct product state(|0⟩+ |1⟩)|φ⟩, the output state at time
T is given by

|ψ⟩T = e−i(G1X+G2P)T |0⟩|φ⟩+ e−i(G1X−G2P)T |1⟩|φ⟩. (15)

Let us define that θ j = T G j/2N for j = 1,2. The output state
at time T becomes (U⊗2N

+ |0⟩|φ⟩+U⊗2N
− |1⟩|φ⟩)/

√
2. Hence,

we show that the composite system can realize the strategy of
coherent superposition as shown in Fig. 2. It does not need to
superimpose the order of the two operations. Consequently, it
is much easier than the strategy of quantum SWITCH.

4. Nonlinear Hamiltonian
In a continuous variable nonlinear system, we first con-

sider a simple nonlinear Hamiltonian, (H1 = X , H2 = P2).
In the large ν and N limit, the estimation precision of θ2

can be calculated by the above way and the communication
relation [X , [X ,P2]] =−2,

δθ2|cs ≈
3

16
√

ν |θ1|2N3 , (16)

δθ2|qs ≈
1√

ν |θ1|2N3 . (17)

From the above equations, one can see that both strategies can
obtain higher estimation precision with super-Heisenberg scal-
ing 1/N3. It demonstrates that nonlinear Hamiltonian can fur-
ther improve the estimation precision based on the two strate-
gies. And the strategy with the coherent superposition can still

perform better than the case with the quantum SWITCH. The
radio between δθ2|cs and δθ2|qs is

δθ2|cs

δθ2|qs
=

3
16

<
1
4
, (18)

which means that compared with the linear case, the nonlin-
earity increases the advantage of strategy with the coherent
superposition over the strategy with the quantum SWITCH in
parameter measurement.

Then, we consider a general nonlinear Hamiltonian,
(H1 = X , H2 = Pm) for integer m > 1. We can analytically
obtain the estimation precision of θ2 by induction (see Ap-
pendix A)

δθ2|cs ≈
m+1

2m+2
√

ν |θ1|mNm+1 , (19)

δθ2|qs ≈
1√

ν |θ1|mNm+1 . (20)

From the above equations, we can see that the super-
Heisenberg limit 1/Nm+1 is achieved. It means that the es-
timation precision can be further improved as m.

After a simple calculation, the radio in the case of the
general nonlinear Hamiltonian is described as

δθ2|cs

δθ2|qs
=

m+1
2m+2 . (21)

As m increases, the ratio gets smaller and smaller. It shows
that the advantage of strategy with the coherent superposition
over the strategy with the quantum SWITCH has been further
extended due to the nonlinear Hamiltonian.

5. Potential application
Firstly, we consider that a optomechanical system is

formed by a Fabry–Pérot cavity with a moving-end mirror.
The Hamiltonian of the system is described as[27,28]

Ĥ = ωcâ†â+
P2

2m
+

1
2

mω
2
mX2 +gâ†âX , (22)

where the last term on the right-hand side of Eq. (22) denotes
the radiation pressure on the mirror with coupling strength g
and â denotes the annihilation operator of the single-mode ra-
diation cavity field with frequency ωc. P and X are momentum
and position operators for the mechanical oscillator of effec-
tive mass m, respectively. Here, in order to make better use of
the strategy of the coherent superposition, we consider a low-
frequency oscillation with ωm −→ 0,[29] leading to that the
harmonic potential energy 1

2 mω2
mX2 is negligible (like a free

particle). And the initial state of the cavity field is given by
(|0⟩+ |1⟩)/

√
2, which generates the coherent superposition.

The state at the evolution time Nτ is written as

|ψ⟩ =

(
exp

(
−i

P2

2m
Nτ

)
|0⟩|φ⟩

090304-3
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+ exp
[
−i

(
ωc +

P2

2m
+gX

)
Nτ

]
|1⟩|φ⟩

)
/
√

2. (23)

The feasible balanced homodyne detection[30] with the
quadrature operator X = (â† + â)/

√
2 is used to measure the

coupling strength g. According to the error transfer formula,
the uncertainty of g can be derived by

δ
2g =

⟨X2⟩− |⟨X⟩|2

|∂ ⟨X⟩/∂g|2
. (24)

By analytical derivation, we can obtain the estimation preci-
sion of g for large N

δ
2g ≈ 72m2(1−⟨U +U†⟩2/8)

g2N6|⟨U −U†⟩|2
, (25)

where

⟨U⟩ = ⟨φ |exp
[
−i

(
g2N3τ3

6m
+ωcNτ

)]
e−igXNτ

× exp
[

i
(Nτ)2P

2m

]
|φ⟩.

Obviously, we can see that the super-Heisenberg scaling 1/N3

has been achieved by the homodyne detection.
Secondly, we consider that a two-level system couples

with an oscillator system via dephasing coupling σZ ⊗ P,
which could be realizable in superconducting qubit-oscillator
devices.[31–33] The Hamiltonian of whole system is described
as follows:

Ĥ ≈ GσZP+V (X)+∆σZ , (26)

where we omit the free Hamiltonian of low-frequency oscil-
lator for the case of strong coupling[34] and V (X) denotes the
nonlinear potential. For example, the nonlinear potential for
Duffing system is V (X) = βX4.[35] By the similar calculation,
we find that the estimation uncertainty of the coupling strength
G and the constant β are proportional to 1/N5.

Thirdly, we consider the gravitational time dilation. The
total Hamiltonian of the system is[36]

Ĥ ≈ P2

2m
+g′X(H0 +mc2)+H0, (27)

where the internal Hamiltonian for this system is H0 =

∑
M
i=1 ωiâ

†
i âi, m denotes the rest mass of the particle in its in-

ternal energy ground state |0⟩, g′ = g/c2 and g represents the
gravitational acceleration on Earth. Let the initial internal state
be the coherent state (|0⟩⊗M + |1⟩⊗M)/

√
2. By the calculation

in the above way, the uncertainty of g can also be found to be
proportional to 1/N3. By obtaining the value of g, one can
check the theory of time dilation in Refs. [36,37].

Fourthly, our work can further test the modification of
the canonical commutation relations,[38] [X ,P] = i(1+αP2),
where the coefficient α ≪ 1. We consider the strategy of

coherent superposition with a general nonlinear Hamiltonian,
(H1 = X , H2 = Pm). The output state is described as

|ψ⟩ =
e−iN(Ĥ1+Ĥ2)|0⟩|φ⟩+ e−iN(Ĥ1−Ĥ2)|1⟩|φ⟩√

2

≈
(

e−iαNm+3
e−iNĤ1 e−iNĤ2 |0⟩|φ⟩

+e iαNm+3
e−iNĤ1 e iNĤ2 |1⟩|φ⟩

)
/
√

2. (28)

As a result, we find that the scaling of the uncertainty of α is
1/Nm+3. In other words, the nonlinear Hamiltonian can effec-
tively improve the estimation precision of α , which will help
to test the modification theory of the canonical commutation
relations.

6. Conclusion and outlook
We have proposed the strategy of coherent superposi-

tion of two different coded channels and shown that super-
Heisenberg scaling can be achieved in the continuous vari-
able system. In the case of linear Hamiltonian, the strategy of
coherent superposition can improve the parameter estimation
precision by 4 times compared with the strategy of quantum
SWITCH. In the case of nonlinear Hamiltonian, the enhanced
scaling 1/Nm+1 with integer m > 1 can be obtained. And the
nonlinearity further increases the advantage of strategy with
the coherent superposition over the strategy with the quan-
tum SWITCH in parameter measurement. Our results provide
a high-precision measurement method, which has a potential
application in estimating the coupling strength of the optome-
chanical system and Duffing system. In addition, by enhanc-
ing the estimation precision of the gravitational acceleration,
the theory of time dilation can be further checked. And we fur-
ther demonstrate that the nonlinearity can offer a better way to
test the modification of the canonical commutation relation.

Adverse conditions, such as uncontrolled environmental
disturbances, generally play a detrimental role in quantum
metrology. The further works can be the study of the strat-
egy of coherent superposition of different coded channels in
decoherence environment.

Appendix A. Exponential commutation relation
The expressions of the exponential commutation relation

can be described as

e(X+Pm) = eX ePm
e∑

m+1
n=2 Cn , (A1)

e(X+Pm) = ePm
eX e∑

m+1
n=2 C′

n . (A2)

Proof Let us first set

eλ (A+B) = eλA eλB eλ 2C2 eλ 3C3 eλ 4C4 ... (A3)
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By differentiating both sides of Eq. (A3) with respect to λ and
multiplying it from the right by e−λ (A+B), we can obtain

A+B = A+ eλABe−λA + eλA eλB(2λC2)e−λB e−λA

+ eλA eλB eλ 2C2(3λ
2C3)e−λ 2C2 e−λB e−λA

+ eλA eλB eλ 2C2 eλ 3C3(4λ
3C4)

× e−λ 3C3 e−λ 2C2 e−λB e−λA + · · · . (A4)

Substituting the known formula

eABeA =
∞

∑
i=0

1
i!
[A(i),B]

into the above equation, one can obtain

0 =
∞

∑
n=1

λ n

n!
[A(n),B]+2λ

∞

∑
m=0

∞

∑
n=0

λ m+n

m!n!
[A(m),B(n),C2]

+3λ
2

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

λ k+m+2n

k!m!n!
[A(k),B(m),C(n)

2 ,C3]

+4λ
3

∞

∑
k′=0

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

λ k′+k+2m+3n

k′!k!m!n!

× [A(k′),B(k),C(m)
2 ,C(n)

3 ,C4]

+ · · · . (A5)

in which

[A(0),B] = B, [A(n+1),B] = [A, [A(n),B]]

[A(k),B(m),C(n)
2 ,C3] = [A, [Ak−1,B(m),C(n)

2 ,C3]].

Based on the above equation, we can obtain the detailed
form of Cn, such as,

C2 =−1
2
[A,B], C3 =

1
3
[B, [A,B]]+

1
6
[A, [A,B]]. (A6)

In principle, the formula can be derived by Eq. (A6). However,
one cannot obtain the general simplified form of Cn for any n.
It cannot be written in a compact form.

Fortunately, when A = X and B = Pm, we can obtain a
simple results by the following induction:

C2 =−1
2
[A,B],

C3 =
1
6
[A(2),B]],

C4 =− 1
24

[A(3),B]],

C5 =
1

120
[A(4),B]], . . . (A7)

According to the above equations, we can get

Cn = (−1)(n−1) 1
n!
[An−1,B]

= (−i)(n−1) m!
n!(m−n+1)!

Pm−n+1. (A8)

For λ = 1, the exponential commutation relation is described
as

e(X+Pm) = eX ePm
e∑

m+1
n=2 Cn . (A8)

When A = Pm and B = X , we can get

C′
2 =

1
2
[B,A],

C′
3 =−1

3
[B(2),A]],

C′
4 =

1
8
[B(3),A]],

C′
5 =− 1

30
[B(4),A]]. (A10)

By induction, in this case, C′
n is described as

C′
n = (−1)n n−1

n!
[Bn−1,A]

=−(−i)(n−1) m!(n−1)
n!(m−n+1)!

Pm−n+1. (A11)

For λ = 1, the exponential commutation relation is described
as

e(X+Pm) = ePm
eX e∑

m+1
n=2 C′

n . (A12)

Appendix B. Measurement with the strategy of
the coherent superposition

Utilizing Eq. (A8), we can express the output state in the
case of the coherent superposition

e−i2(θ1X+θ2Pm)N |0⟩|φ⟩+ e−i2(θ1X−θ2Pm)N |1⟩|φ⟩

= e−i2Nθ1X e−i2Nθ2Pm
e∑

m+1
n=2 (−2N i)nθ

n−1
1 θ2Cn |0⟩|φ⟩

+ e−i2Nθ1X e i2Nθ2Pm
e∑

m+1
n=2 −(−2N i)nθ

n−1
1 θ2Cn |1⟩|φ⟩. (B1)

Then, the quantum Fisher information can be achieved by
ℱθ = 4(⟨∂θ ψ|∂θ ψ⟩− |⟨∂θ ψ|ψ⟩|2). As a result, we obtain the
general formula

ℱθ2 |cs = 4|⟨−2iNPm +mθ1(−2N i)2Pm−1/2+ · · ·

+(−1)m
θ

m
1 (−2N i)m+1 −1

m+1
⟩|2, (B2)

where ⟨·⟩= ⟨φ | · |φ⟩. For N ≫ θ1⟨P⟩,

ℱθ2 |cs ≈
22(m+2)θ 2m

1 N2(m+1)

(m+1)2 . (B3)

Apprndix C. Measurement with the strategy of
the quantum SWITCH

Utilizing Eq. (A12), we can express the output state in the
case of the quantum SWITCH

e−iNθ1X e−iNθ2Pm |0⟩|φ⟩+ e−iNθ2Pm
e−iNθ1X |1⟩|φ⟩

= e−iNθ1X e−iNθ2Pm

090304-5
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× (|0⟩|φ⟩+ e−imPm−1θ1θ2N2+···+(−i)mNm+1θ m
1 θ2 |1⟩|φ⟩).

(C1)

Then, the quantum Fisher information can be achieved by
the similar way

ℱθ2 |qs

= 2(|⟨NPm⟩|2

+ |⟨−iNPm − imθ1N2Pm−1 + · · ·+(−i)m
θ

m
1 Nm+1⟩|2

−|⟨−i2NPm − imθ1N2Pm−1 + · · ·+(−i)m
θ

m
1 Nm+1⟩|2).

(C2)

For N ≫ θ1⟨P⟩, the above equation can be simplified as

ℱθ2 |cs ≈ θ
2m
1 N2(m+1). (C3)
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