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We propose an optimized cluster density matrix embedding theory (CDMET). It reduces the computational cost of
CDMET with simpler bath states. And the result is as accurate as the original one. As a demonstration, we study the distant
correlations of the Heisenberg J1–J2 model on the square lattice. We find that the intermediate phase (0.43 . J2 . 0.62) is
divided into two parts. One part is a near-critical region (0.43 . J2 . 0.50). The other part is the plaquette valence bond
solid (PVB) state (0.51 . J2 . 0.62). The spin correlations decay exponentially as a function of distance in the PVB.
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1. Introduction
Distant correlations capture interesting physical proper-

ties (for example, phase transitions[1–9] in exotic phases) of
the quantum spin system, which is a typical strongly corre-
lated quantum many body system. But as the dimension of
the Hilbert space grows exponentially with the system size, it
is difficult to solve a large system exactly. An effective and
accurate description of large systems would have significant
impact on theoretical predictions. Density matrix embedding
theory (DMET)[10–14] is a cheap method to map the system to
a quantum impurity plus bath problem. The complexity, of the
impurity basis construction in DMET, could amount to a rather
small matrix diagonalization. However, the DMET still needs
remarkable computational cost to simulate large systems, be-
cause it needs different configurations to formulate the system.

In this paper, we optimize the cluster density matrix em-
bedding theory (CDMET).[13] In our optimized CDMET, the
configurations, of a great part of the system, are treated as
identical. This reduces the computational cost. The accu-
racy is the same as before. The new CDMET we propose in
this paper is effective and computationally accessible. It does
not deteriorate with the system size. It can be applied to a
broad range of problems. We study the validity of the new
CDMET by implementing it on the Heisenberg J1–J2 model
on the square lattice. The Hamiltonian of this model is

H = J1 ∑
(i, j)

𝑆i ·𝑆 j + J2 ∑
〈i, j〉

𝑆i ·𝑆 j (J1,J2> 0) , (1)

where (i, j) represents the nearest neighbor (NN) and 〈i, j〉
represents the next nearest neighbor (NNN). For convenience,
we set J1 = 1 as the energy unit throughout the paper. We set
the lattice spacing between the nearest neighbor spins as the
length unit. We define a cluster as a square of 2×2 spins. This
shape of cluster is demonstrated to be suitable for application

to a square J1–J2 lattice.[13] We consider the system with pe-
riodic boundary conditions. This model is simple and useful
in Fe-based superconductors and other materials.[15] Different
theoretical approaches are used to study this model.[13,14,16–29]

A well-established consensus is that the model has Neel mag-
netic long range order at small J2 region and stripe magnetic
long range order at large J2 region. The combined effect of
frustration and quantum fluctuations destroys antiferromag-
netism. It leads to a nonmagnetic quantum paramagnetic (dis-
ordered) phase (intermediate phase), within the intermediate
parameter region. However, two problems of this model are
still under debate: the nature of the disordered intermediate
phase, and the phase transition between it and the Neel phase.
Because of the sign problem, large scale quantum Monte Carlo
simulations cannot be applied to these two problems.[30] We
think that our new CDMET is a good alternative option to
shed light on these two problems. In Refs. [13,14], the Neel
phase (a long range order phase) appears at small J2 values. At
J2 ∼ 0.42 the system transfers from the Neel phase into a dis-
ordered phase. The system undergoes a transition to the stripe
phase (another long range order phase) at J2∼ 0.62. We repeat
their results with CDMET.

In the new CDMET, we use a cheap method to treat the re-
mote part of the bath state. The spin energies obtained by the
original and the new CDMET are consistent with each other
pretty well. By implementing the new CDMET on the large
system, we find that the intermediate phase is divided into two
parts. One part is a near-critical region (0.43 . J2 . 0.50).
The other part is the plaquette valence bond (PVB) phase
(0.51 . J2 . 0.62). In the PVB phase, the spin correlations
decay exponentially. After careful observation of the distant
spin correlations, the entanglement entropy (EE), and the spin
energy, we conclude that the transition from the Neel phase to
the intermediate phase is continuous. The small near-critical
region (0.43 . J2 . 0.50) may be a mixture of the Neel phase
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and the valence bond solid (VBS) phase (Neel phase with VBS
modulation).

2. Formulation
The wave function of CDMET is[13]

|Ψ〉=
ni

∑
i=1

ai|αi〉|βi〉, (2)

where {| αi〉} denotes the basis set of the impurity (the em-
bedded spins), {| βi〉} denotes the bath (other spins except the
embedded spins) states, ai denotes the expansion coefficient,
and ni denotes the number of impurity basis. The number of
the bath states equals the number of the impurity basis. In the
original CDMET,[13] the bath state | βi〉 is block-product state
| βi〉= ∏

c
| β c

i 〉, where | β c
i 〉 denotes the state of bath cluster c.

It goes without saying that, in the original CDMET, for any
cluster, the ni states | β c

i 〉 are treated as different.
In our optimized CDMET, for the distant clusters from

the embedded spins, the ni states | β c
i 〉 of a cluster are treated

as identical,

| β c
i 〉= | β c〉 . (3)

In the new CDMET, the neighbor clusters of the embedded
spins are treated just like in the original CDMET. The dis-
tant clusters from the embedded spins are treated as shown
in Eq. (3). This formulation simplifies the bath states. It is
based on the consideration that the remote clusters have minor
influence on the embedded spins. This treatment reduces the
computational cost. It lightens the burden in the calculation
of large systems. Fan et al.[13] noted that the spin energy of
the remote clusters is close to that obtained by the hierarchical
mean-field method.

The subsequential question is to decide which clusters
should be treated as neighbor clusters in the new CDMET. To
answer this question, we try some cases (Figs. 1–3) with the
new CDMET. We compare the spin energy of an embedded
cluster obtained by the original CDMET with that obtained
by the new CDMET. In the first case, the clusters (red solid
boxes in Fig. 1), which have both J1 and J2 interactions with
the embedded spins, are treated as neighbor clusters in the new
CDMET. In this case, the spin energy is close to the original
result (Fig. 2). The spin energy difference between the orig-
inal and the new CDMET is not obvious at small J2 values.
But at large J2 region, the difference becomes obvious. In the
second case, the clusters (red dashed boxes in Fig. 1), which
have only J2 interactions with the embedded spins, are treated
as neighbor clusters in the new CDMET. In this case, the spin
energy difference between the new and the original CDMET
is obvious at all J2 values (Fig. 2).

1 2

3 4

Fig. 1. The black circle dots denote the spins. The blue (green dashed)
bonds denote the nearest (next nearest) neighbor interactions. The red
shaded box denotes the impurity cluster. The red solid boxes denote the
bath clusters which have both J1 and J2 interactions with the impurity. The
red dashed boxes denote the bath clusters which only have J2 interactions
with the impurity. The embedded spins are numbered from 1 to 4.
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Fig. 2. The spin energy of an embedded cluster, obtained by the origi-
nal CDMET (squares) and the new CDMET, in a system of 8×8. Two
cases in the new CDMET are considered. In the first case (cycles),
the clusters, which have both J1 and J2 interactions with the embedded
spins, are treated as neighbor clusters. In the second case (triangles),
the clusters, which have only J2 interactions with the embedded spins,
are treated as neighbor clusters.

In the third case, the clusters (red solid boxes and red
dashed boxes in Fig. 1), which have (J1, J2) interactions with
the emebdded spins, are treated as neighbor clusters in the new
CDMET. In this case (Fig. 3), the spin energy obtained by the
original CDMET is pretty well consistent with that obtained
by the new CDMET. The original CDMET is implemented in
the system of 8× 8. The new CDMET is implemented in the
systems of 8×8, 12×12, 24×24. The largest absolute value
of the spin energy differences (Fig. 3(b)) between the new and
the original CDMET is about 0.002. The error between dif-
ferent methods seems to be the largest around PVB to stripe
phase transition in Fig. 3. As it is a first order phase transi-
tion, the wave function has a sudden change. A disturbance
may take place around this phase transition. This enlarges the
error. Some curves in Fig. 3(a) are shifted. Without shift, the
curves in Fig. 3(a) are completely identical. Meanwhile, in the
system of 12×12, in the third case, to run a step (calculate all
the states and all the clusters once), the new CDMET needs
about 1/5–1/4 of the time needed by the original CDMET.
Starting from a random initial wave function, we measure the
time that the new (original) CDMET needs to get the ground
state wave function. At a J2 value, we try 15 random initial
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wave functions, and take the average time Tnew (Toriginal). The
ratio Tnew/Toriginal at J2 = 0.2, 0.45, 0.55, 0.80 are respectively
about 0.16, 0.25, 0.22, 0.29. This illustrates the gain in com-
putational efficiency of the new CDMET. The new CDMET
reduces the computational cost, and is as accurate as the orig-
inal CDMET. Furthermore, the spin energies (Fig. 3) obtained
by the new CDMET implemented in different system sizes are
consistent with each other very well. This indicates that, un-
like some other simulation approaches, the new CDMET, as
well as the original CDMET,[13] is insensitive to the system
size. It can obtain reasonable results in the thermodynamics
limit at a finite system size. This allows us to study the system
at the thermodynamic limit without further extraneous numer-
ical approximations. However, in the new CDMET, the lack
of long-range interactions in the spin lattice model may be a
reason for the insensitivity to the system size.
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Fig. 3. (a) The spin energy of an embedded cluster, obtained by the orig-
inal and the new CDMET. The curves of cycles, triangles, pentagons are
respectively shifted by 0.1, 0.2, 0.3. Without shift, the four curves are
completely identical. (b) The absolute values of the spin energy differ-
ence between the original CDMET and the new CDMET. The original
CDMET is implemented in the system of 8× 8 (squares). The new
CDMET is implemented in the systems of 8× 8 (cycles), 12× 12 (tri-
angles), 24×24 (pentagons).

3. Distant correlation
At first, we briefly introduce the ground state phase dia-

gram (Fig. 4) in this paper. In the small J2 region (J2 . 0.42),
the ground state has the Neel antiferromagnetic (AF) long
range order with a Bragg peak at q = (π,π) in the spin struc-
ture factor. When J2 is comparable to J1 (J2 & 0.63), the stripe
AF long range order, with Bragg peaks at q = (0,π) and (π ,
0) in the spin structure factor, is stabilized. Between these
two long range order phases, there are a near-critical region
(0.43 . J2 . 0.50) and the PVB (0.51 . J2 . 0.62).[16,18,25,29]

J2

n
e
a
r
c
r
it
ic
a
l

P
V
B

Neel stripe

0 0.42 0.50 0.62 1.0

Fig. 4. Ground state phase diagram of Heisenberg J1–J2 model on
square lattice obtained in the present study.

3.1. The intermediate phase is divided into two parts

The nature of the intermediate phase is still in debate.
Many interpretations are proposed, such as spin liquids (SL),
valence bond states like the columnar and staggered dimer
VBS, the PVB and the plaquette resonating valence bond
(PRVB) state.[16,17,19–29] To go deep into this exotic and mys-
terious phase, we use the new CDMET to embed 6 spins
at the top left corner of 6 horizontally consecutive clusters,
on a large system (24× 24). We calculate spin correlation
C (i, j) = 〈𝑆i ·𝑆 j〉, where 𝑆i and 𝑆 j are respectively spin op-
erators of spin i and spin j. In the Neel phase, the spin corre-
lations change with distance in a way far from exponential de-
caying (Fig. 5(a)). However, when the system comes into the
intermediate phase from the Neel phase, the spin correlations
gradually tend to decay exponentially. In 0.43 . J2 . 0.50,
the spin correlations decay slower than an exponential one.
But, when J2 & 0.51 the decaying is exponential. Consistently,
Wang et al.[31] also found that, in the region 0.572 < J2 ≤ 0.6,
the spin correlations decay exponentially. This subtle change
at J2 ' 0.50 may indicate a phase transition, which was also
noted by Gong et al.[16] at J2 = 0.5. We conjecture that the
small region 0.43 . J2 . 0.50 is a near-critical region. It con-
nects the slow decaying region (the Neel phase) with the ex-
ponential decaying region (0.51 . J2 . 0.62). According to
the work of Gong et al.,[16] the system is in the PVB phase
at 0.5 < J2 < 0.61. Consistently, Doretto[29] also agreed that
the PVB phase takes place in this region. Subsequent results
(Fig. 7) in this paper also indicate that the system is in the PVB
phase at 0.51 . J2 . 0.62.

The small near-critical region (0.43 . J2 . 0.50) might
be a mixed phase (Neel phase with VBS modulation).[33,34]

As we can see that (Fig. 5(a)), in this near-critical region, the
spin correlations decay faster than those in the Neel phase,
but slower than those in the PVB phase. This region looks
like a mixture of the Neel phase and the VBS phase. The
change, of the spin correlations (Fig. 5(a)) from J2 = 0.4 to
J2 = 0.55 is gradual. This indicates that the controversial
phase transition[20,32] from the Neel phase to the intermediate
phase is continuous.
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Fig. 5. Absolute values of spin correlations obtained from the new CD-
MET in the system of 24× 24. The blue diamonds denote the Neel
phase. The black triangles denote the near-critical region. The red
circles denote the PVB phase. The green pentagons denote the stripe
phase. (a) From top to bottom, the curves respectively denote the spin
correlations at J2 = 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.51, 0.52, 0.53,
0.55, and are respectively shifted by 100.9, 100.8, 100.9, 100.8, 100.7,
100.6, 100.3, 100.2, 100.1, 0.0. (b) Except for the curve of green stars,
from bottom to top, the curves respectively denote the spin correlations
at J2 = 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, and are respectively
shifted by 100.2, 100.4, 100.6, 0.0, 100.1, 100.2, 100.3.

Moreover, the spin energy curves (Fig. 3) also indicate
that this phase transition is continuous. To support this, we
calculate the entanglement entropy (EE) and its first order
derivative in Fig. 6. If we divide the system into two parts
A and B, the EE between these two parts is defined as S =

−Tr(ρAlog2ρA), where ρA = TrB(ρAB) is the reduced den-
sity matrix of part A. We embed a cluster. Part A is spin 1
(squares in Fig. 6); or spins 1, 2 (circles in Fig. 6); or spins 1,
2, 3 (triangles in Fig. 6); or spins 1, 2, 3, 4 (diamonds in Fig. 6)
of the embedded cluster (Fig. 1). Part B is the rest of the sys-
tem. A discontinuity or singularity in the EE indicates a first
order quantum phase transition, and a peak in the derivative
of the EE indicates a continuous quantum phase transition.[13]

All the derivatives of EE peak at J2 ≈ 0.42 (Fig. 6(b)). This
indicates that the phase transition from the Neel phase to the
intermediate phase is continuous. By contrast, the spin corre-
lations have a sudden change in the transition from the PVB
phase to the stripe phase (Fig. 5(b)). This indicates that this
phase transition is a first order one. This is also supported by
the discontinuity or singularity of the EE (Fig. 6(a)).
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Fig. 6. (a) Entanglement entropy (EE) and (b) its first order derivative
on a system of 24× 24. The squares, circles, triangles, diamonds re-
spectively denote the EE (first order derivative of EE) of spin 1; spins
1, 2; spins 1, 2, 3; spins 1, 2, 3, 4 in the embedded cluster.

If we embed 6 spins at the top left corner of 6 horizon-
tally consecutive clusters as mentioned above, we measure the
spin correlations for every other site (cycles, inset of Fig. 5(a)).
To optimize the resolution, we embed 6 consecutive spins at
the top of 3 horizontally consecutive clusters on a system of
12× 12, and measure the spin correlations (squares, inset of
Fig. 5(a)). The spin correlations obtained by these two em-
bedding types are similar (inset of Fig. 5(a)). The spin corre-
lations discussed above in the stripe phase are along its stripes.
We also calculate the spin correlations vertical to the stripes at
J2 = 0.7 (green stars in Fig. 5(b)). The curve is shifted by
10−0.3. The distant spin correlations along both directions are
strong. In Ref. [35], the static spin structure factors, which
are Fourier transformation of the spin correlations, have very
sharp peaks in the stripe phase of the square lattice. These
sharp peaks indicate strong distant spin correlations. This is
consistent with our results.

3.2. Dimer correlation

To shed light on the structures of different phases, we cal-
culate the dimer correlation DC = 〈𝐷α

i ·𝐷
β

j 〉, where 𝐷α
i =

𝑆i ·𝑆i+α , 𝑆i and 𝑆i+α are spin operators. In this definition,
𝐷α

i is a dimer which is a nearest neighbor bond on the square
lattice. We choose one reference dimer (the line in ellipse
in Fig. 7), and calculate the correlations between it and the
other dimers in a system of 24× 24. In Fig. 7, some dimer
correlations are labelled by numerical values. If we label all
the dimer correlations with numerical values, the labels will
overlap with each other. The thicknesses of lines denote the
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strengths of dimer correlations. One can judge the dimer cor-
relations by the thicknesses. Figure 7(c) shows the dimer cor-
relations in the intermediate phase at J2 = 0.55. Every four
spins look like to form into a plaquette. The four dimers in
a plaquette have the same positive correlations with the ref-
erence dimer. This signals the PVB pattern at J2 = 0.55.
The inter-plaquette dimer correlations are significantly weaker
than the intra-plaquette ones. There is no obvious decaying
of dimer correlations in the intermediate phase at J2 = 0.55
(Fig. 7(c)). The dimer correlations look like to maintain a
nearly constant value. This may indicate VBS order. Or con-
servatively, at a minimum, the result indicates that it at least
has a (weak) VBS order at J2 = 0.55. Based on these, we

consider the region (0.51 . J2 . 0.62) as PVB. Consistently,

Gong et al.[16] also found PVB in this region. We cannot see

obvious difference between the dimer correlations at J2 = 0.45

(Fig. 7(b)) and J2 = 0.55 (Fig. 7(c)). Distant spin correlations

(Fig. 5) are more sensitive than dimer correlations (Fig. 7) to

the phase transition between the near-critical region and the

PVB. In Fig. 7(d), at J2 = 0.8, in the stripe phase, the horizon-

tal dimers have positive correlations with the reference dimer.

The vertical dimers have negative correlations with the refer-

ence dimer. They form stripes. In Fig. 7(a), at J2 = 0.2, in the

Neel phase, all the dimers have positive correlations with the

reference dimer.

(a) (b)

(d)(c)

Fig. 7. Dimer correlations on a 24×24 system for different J2 values: (a) (J2 = 0.2) in the Neel phase, (b) (J2 = 0.45) and (c) (J2 = 0.55) in
the intermediate phase, (d) (J2 = 0.8) in the stripe phase. The reference dimer is denoted by the line in ellipse. Negative (positive) correlations
are represented by dashed (solid) lines. One cluster is embedded. The reference dimer is in the embedded cluster.

4. Summary

We propose an optimized CDMET, and treat the spins far
away from the impurity in the similar way of mean field the-
ory. The accuracy is the same as before. We use the new
CDMET to study distant correlations on large systems. In the
intermediate phase, the spin correlations gradually tend to de-
cay exponentially as a function of distance. The small region

(0.43 . J2 . 0.50) is considered as a near-critical region. The
spin correlations indicate that this small near-critical region
may be a mixed phase (Neel phase with VBS modulation).
We find that, at J2 = 0.55, every four spins form into a pla-
quette. This signals the PVB pattern. The PVB takes place in
0.51 . J2 . 0.62. In the PVB phase, the spin correlations de-
cay exponentially. The spin correlations, the EE, and the spin
energy indicate that the phase transition from the Neel phase
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to the intermediate phase is continuous.
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