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We investigate the correlations between two qubits in the Grover search algorithm with arbitrary initial states by
numerical simulation. Using a set of suitable bases, we construct the reduced density matrix and give the numerical
expression of correlations relating to the iterations. For different initial states, we obtain the concurrence and quantum
discord compared with the success probability in the algorithm. The results show that the initial states affect the correlations
and the limit point of the correlations in the searching process. However, the initial states do not influence the whole cyclical
trend.
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1. Introduction
Over the past two decades, it was demonstrated that quan-

tum algorithms could solve some non-deterministic polyno-
mial complete problems in polynomial time. Shor’s factor-
ization algorithm[1] and Grover’s search algorithm[2] show
this advantage. And many works have focused on the reason
for the quantum speedup.[3,4] Since then, quantum algorithms
have been at the forefront of research. There have been many
versions of the search algorithm, for instance, the algorithm
searching for unknown number of targets,[5] the algorithm
used for query-based eigensolver[6] and for image retrieval.[7]

However, it quickly became clear that it was not enough to
concentrate on quantum algorithms alone, but rather to put a
lot of efforts into studying reasons behind their superiority.
One widely accepted theory was that quantum entanglement
is of particular significance in the algorithms. At that time, en-
tanglement was thought as exactly nonclassical correlations.[8]

The statement had been questioned until it was proved that en-
tanglement cannot explain all nonclassical correlations. The
separated states also have correlations called quantum discord
in the DQCI model.[9–11] Subsequently, correlations as an im-
portant source are important to quantum communication and
so on.[12–15] And quantum coherence related to correlations is
also regarded as a fundamental resource in quantum informa-
tion processing.[16–19]

Recently, there are many works offering a set of elabo-
rates that quantum entanglement is the key to reducing the
time complexity from O(N) to O(

√
N) in the Grover search

algorithm.[20] To evaluate the effects on correlations in the

algorithm, it would be useful to quantify them in actual ap-
plication. They are applied to develop measures for bipartite
systems, such as concurrence.[21–23] So far, a lot of reports
on estimating quantitatively correlations in the algorithm have
been published. Most measurements are concerning on bi-
partite entanglement and multipartite entanglement.[24–28] In
terms of concurrence and quantum discord, the correlations in
states produced by Grover’s iterations were calculated by nu-
merical methods. It was revealed that the excellence of the al-
gorithm is the ability to generate highly-entanglement states in
the process and single state when we make measurement.[29]

As for global correlations, Batle et al. pointed that no quan-
tum correlation boosts the search. Furthermore, the process
that first increases and then decreases is a common trend for
correlations.[30–32]

The above results show that entanglement plays more sig-
nificant role in the algorithm than correlations different from
it.[33–37] But there are a few studies focused on the compari-
son about entanglement and correlations in the algorithm with
the arbitrary initial states. The algorithm with an arbitrary
initial state is one generalization of the origin, considered to
study how the initial states influence the correlations. In this
paper, we use an entanglement measure concurrence 𝒞(ρ)
and quantum discord D(A,B) in terms of classical correla-
tion C(A,B) and mutual information I(A,B) to quantity cor-
relations in states produced by iterations.[38,39] In the calcu-
lations, to obtain the reduced density matrix is difficult. We
could construct a set of suitable bases. Based on the above
method, the numerical procedure is applied to numerically cal-
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culate 𝒞(ρ) and D(A,B) for different initial states. It is found
that the curves of correlations repeat twice the process where
increases up to approximately half of the optimal number of
iterations and then decreases. And it is verified with the uni-
formed initial states in Ref. [30]. That is, the initial states have
little effect on the trend of the correlations.

The paper is organized as follows. In Section 2, the quan-
tum search algorithm with arbitrary initial states is described.
In Section 3, the different correlation measures are presented
and the calculation procedure of correlations is introduced. In
Section 4, the procedure is used to perform calculations for
different initial states. In Section 5, the results are summa-
rized.

2. Grover search algorithm with an arbitrary
initial state
In the Grover search algorithm, we may adopt an n-qubit

quantum register to figure all elements , where N = 2n. Each
contains the indices i = 0,1, . . . ,n− 1. It is further assumed
that the labeled states are exactly solutions to the search prob-
lem. Determining whether an element is the labeled state
can be represented by the Boolean function f (i). It satisfies
f (i) = 1 if |i⟩ is the solution, while f = 0 for the other states.

First, we introduce an n-qubit register |i⟩ =

|i0, i1, . . . , iN−1⟩ and an auxiliary qubit |q⟩ in the computa-
tion. A quantum oracle O operates as a black box competent
to recognize the labeled elements. The auxiliary qubit flips
from |0⟩ to |1⟩ when |i⟩ is a solution or unchanged. It works
as follows on computational bases |i⟩ when the ancilla |q⟩ is
initially set to the state |−⟩= (|0⟩− |1⟩)/

√
2:

O|i⟩|−⟩q = (−1) f (i)|i⟩|−⟩q. (1)

Obviously, the labeled states are applied a phase of −π . Since
the auxiliary state does not change, we describe it as O|i⟩ =
(−1) f (i)|i⟩ for convenience. We describe the search algorithm
in the following.

Step 1 The initialization phase. Prepare the n-qubit reg-
ister |0⟩⊗n and the ancilla |1⟩q. Then, perform the H gate on
each qubit in the n-qubit register and the ancilla

H =
1√
2

(
1 1
1 −1

)
.

The resulting state regarded as the initial state is |φ(0)⟩ =
1√
N ∑

N−1
i=0 |i⟩. The auxiliary qubit is |−⟩q. Here we discuss an

arbitrary, possibly entangled state as the initial state

|ϕ(0)⟩=
N−1

∑
i=0

ai(0)|i⟩. (2)

Step 2 Grover’s iterations. First, the oracle operator is
applied, which contributes to the labeled states’ phase nega-
tive. Because it has no effect on the auxiliary state, the effect

can be expressed as

Iπ
f |ϕ(0)⟩=

N−1

∑
i=0

(−1) f (i)ai(0)|i⟩. (3)

Second, the following three steps are performed: apply
the H gate to each qubit in the n-qubit register; rotate the state
|00 · · ·0⟩ by a phase of π radians; apply the H gate again. They
cause all states rotated by π radians around their average am-
plitude, which is generally described as

−H⊗nIπ
0 H⊗n|ϕ(0)⟩=

N−1

∑
i=0

(2ā(0)−ai(0))|i⟩, (4)

where ⊗ denotes the tensor product, representing to apply the
H gate to n qubits, and ā(0) is the average of the all ampli-
tudes. The operation combining the above two rotations in
one Grover iteration is expressed as

UG =−H⊗nIπ
0 H⊗nIπ

f . (5)

Step 3 Measurement. Measure the n-qubit register in the
computational bases after τ Grover iterations, where τ is the
optimal number of iterations in the form

τ =

⌊(
π

2
−
√

r
N − r

)/
cos−1(1−2r/N)

⌋
, (6)

⌊x⌋ does x to round up and round down numbers. The success
probability can be expressed as

P = N|ā(0)|2 +O
(

1√
N

)
.

The origin Grover search algorithm is usually approxi-
mate, and it is only exact when finding one out of four. The
phase matching condition could be used to obtain the exact
solutions with a restricted arbitrary initial state.[40–42] In gen-
eral, P(r) is reduced in the algorithm with an arbitrary initial
state |ϕ(0)⟩. For the specified solution space, the weighted
averages of the amplitudes satisfy the recursion equations.[43]

Under these circumstances, the optimal number of iterations
is confirmed to be the same as the case where the initial state
is |φ(0)⟩. Whereas, the success probability P(r) is decreased,
and, more importantly, it reaches the minimum after τ itera-
tions with some certain initial states.

3. Quantum correlations
3.1. Concurrence

For arbitrary mixed state, concurrence is a well-accepted
measure of bipartite entanglement.[44–46] To measure the en-
tanglement in the n-qubit linear register, a convenient method
is tracing out n−2 qubits and subsequently detecting the con-
currence.

Given bipartite density matrix ρ , a new related matrix is
obtained by ρ̃ = (σy ⊗σy)ρ

†(σy ⊗σy), where σy is the Pauli
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matrix which is effective in a phase and bit flip and ρ† in-
dicates the conjugation of ρ . Then concurrence is obtained
through the formula

𝒞(ρ) = max{0,λ1 −λ2 −λ3 −λ4} . (7)

All λi’s are the square roots of the eigenvalues of the matrix
ρρ̃ and λ1 ≥ λ2 ≥ λ3 ≥ λ4.

3.2. Quantum discord

Quantum discord is the difference between the total corre-
lation and the classical correlation after the measurement. The
total correlation is the quantum mutual information expressed
in the form[47]

I(A,B) = S(ρA)+S(ρB)−S(ρAB). (8)

Classical correlation between A and B is explained as the max-
imum information we could obtain from A (B) after measuring
B (A).[48] Choose a complete set of projectors {Πi} to measure
the subsystem A. Correspondingly, the index set {i} represents
results with the probability of pi. The state of B after acting
the projectors is

ρB|i =
TrA(ΠiρABΠi)

TrAB(ΠiρABΠi)
,

and pi = TrAB(ΠiρABΠi). For an arbitrary density matrix AB,
the choice of measurement proves a decisive factor of the
above presentation. That is, the different measurement bases
we applied, the different results we obtained. So the biggest
amount of information based on the measurement is

C(A,B) = max
{Πi}

{
S(ρB)−∑

i
piS(ρB|i)

}

= S(ρB)−min
{Πi}

{
∑

i
piS(ρB|i)

}
. (9)

Thus, quantum discord is mathematically described by

D(A,B) = I(A,B)−C(A,B)

= min
{Πi}

{
∑

i
piS(ρB|i)

}
+S(ρA)−S(ρAB). (10)

3.3. Calculation procedure of quantum correlations

Consider an arbitrary initial state of the real amplitude
|ϕ(0)⟩ in the Grover search algorithm. In general, we use
U0|0⟩ to represent the initial state, where U0 is the unitary

transformation. In the origin Grover algorithm, U0 = H⊗n.
When we suppose that |ϕ(0)⟩= ∑

N−1
i=0 ai(0)|i⟩, we obtain

|ϕ(0)⟩ = ∑
k
|ik⟩⟨ik|U0|0⟩+ ∑

j ̸=ik

| j⟩⟨ j|U0|0⟩

= sinβ |A(0)⟩+ cosβ |B(0)⟩, (11)

where |A(0)⟩ is the set of solutions and |B(0)⟩ is the set of the
remain states. Easily, we calculate that

|A(0)⟩= 1
sinβ

(
∑
k
|ik⟩⟨ik|

)
U0|0⟩=

1
sinβ

∑
k

U0,ik |ik⟩, (12)

|B(0)⟩= 1
cosβ

(
∑
j ̸=ik

| j⟩⟨ j|
)

U0|0⟩=
1

cosβ
∑
j ̸=ik

U0, j| j⟩, (13)

where U0,ik = ⟨ik|U0|0⟩ and U0, j = ⟨ j|U0|0⟩. It is considered
in this paper that there is only one target state, written as |i′⟩.
So we have

|A(0)⟩= 1
sinβ

ai′(0)|i′⟩, |B(0)⟩= 1
cosβ

∑
j

a j(0)| j⟩,

where sinβ = ai′(0),cosβ =
√

1−a2
i′(0). And the initial state

can be written as |ϕ(0)⟩ = ai′(0)|A(0)⟩+
√

1−a2
i′(0)|B(0)⟩.

To obtain the density matrix of the total system, it is feasible
to select a set of normalized basis of this form

|A(r)⟩= |i′⟩, |B(r)⟩= ∑
j ̸=i′

a j(r)√
1−a2

i′(r)
| j⟩. (14)

Based on the above bases, the density matrix is

ρ = a2
i′(r)|A(r)⟩⟨A(r)|+(1−a2

i′(r))|B(r)⟩⟨B(r)|

+ai′(r)
√

1−a2
i′(r)(|A(r)⟩⟨B(r)|+ |B(r)⟩⟨A(r)|)

= (1−a2
i′(r)) ∑

j1, j2 ̸=i′

a j1(r)a j2(r)
1−a2

i′(r)
| j1⟩⟨ j2|+a2

i′(r)|i
′⟩⟨i′|

+ai′(r)
√

1−a2
i′(r)

(
∑
j ̸=i′

a j(r)√
1−a2

i′(r)
(| j⟩⟨i′|+ |i′⟩⟨ j|)

)
.

(15)

We can get the from of two-qubit reduced density matrix
using the above n-qubit one by tracing out any n−2 qubits. A
widely-used method is to divide the above N-dimensional ma-
trix into four-dimensional matrix with the amount of 2n−2 ×
2n−2 and sum the diagonal elements up. It takes the following
form named as ρ(r):


∑i a2

i (r) ∑i ai(r)ai+1(r) ∑i ai(r)ai+2(r) ∑i ai(r)ai+3(r)

∑i ai(r)ai+1(r) ∑i a2
i+1(r) ∑i ai+1(r)ai+2(r) ∑i ai+1(r)ai+3(r)

∑i ai(r)ai+2(r) ∑i ai+1(r)ai+2(r) ∑i a2
i+2(r) ∑i ai+2(r)ai+3(r)

∑i ai(r)ai+3(r) ∑i ai+1(r)ai+3(r) ∑i ai+2(r)ai+3(r) ∑i a2
i+3(r)

 ,
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where i =
{

0,4, . . . ,2n−1
}

. According to the above reduced
density matrix, concurrence could be calculated.

Next, we will calculate quantum discord by the defini-
tion. The major task is to find the minimum amount of infor-
mation obtained by one subsystem after measuring the other
system. The operator bases could be adopted with the form
of
{

cosθ |0⟩+ e iω sinθ |1⟩, e−iω sinθ |0⟩− cosθ |1⟩
}

, where
0 ≤ θ ≤ 2π and 0 ≤ ω ≤ 2π . How to find the minimum of
this binary function is a crucial step. Apparently, the align-
ment cannot be obtained in the case in which the amplitudes
of states are unknown. Instead, the minimum can be obtained
by the steepest descent method with different initial points.

4. Analytical calculations of quantum correla-
tions

4.1. Two-qubit states

Consider a two-qubit state with the real amplitudes in the
form

|ϕ(0)⟩=
3

∑
i=0

ai(0)|i⟩. (16)

We obtain Table 1 about the amplitudes under different itera-
tions, where α = ∑ j ̸=i′ a j(0). It shows that the success prob-
ability to search is periodic, which makes concurrence and
quantum discord periodic. Since the elements of the density
matrix are invariable whether the amplitudes are positive or
negative. Obviously,

(α +ai′(0))
2 ≥ (α −ai′(0))

2

is true when ai′(0) is positive. In this sense, the max probabil-
ity to search |i′⟩ is expressed as

Pmax = max

{
a2

i′(0),
(

1
2
(α +ai′(0))

)2
}
. (17)

The best number of iteration is one in Eq. (6), while it is true
only when ( 1

2 (α + ai′(0)))2 ≥ ai′(0)2. Discussing the case
where the initial state is |i′⟩ is meaningless. To make Pmax = 1,
the amplitudes satisfy the condition α + ai′(0) = 2 that the
superposition state of a uniform amplitude distribution |φ(0)⟩
meets. And the algorithm works best in the circumstances re-
sulting in concurrence and quantum discord almost equal to
zero when r = 1.

Based on the reduced density matrix, concurrence has the
following analytic equation:

𝒞(ρ) = 2 |a0(r)a3(r)−a1(r)a2(r)| . (18)

In terms of quantum discord, the two-qubit reduced matrix ρAB

has eigenvalues {0,0,0,1}, while the one-qubit reduced ma-
trix ρA(B) has eigenvalues 1

2 (1±
√

1−𝒞(ρ)2). Finding θ and
ω to realize the minimum relies on computers for help. Obvi-
ously, the eigenvalues of ρA(B) are {0,1} when 𝒞(ρ) = 0.

Table 1. The amplitudes in all states when N = 4.

r 0 1 2 3

ai′ (r) ai′ (0)
1
2 (α +ai′ (0))

1
2 (α −ai′ (0)) −ai′ (0)

a j(r) a j(0) 1
2 (α −ai′ (0))−a j(0) 1

2 (−α −ai′ (0))+a j(0) −a j(0)

4.2. Multiple-qubit states
4.2.1. The same amplitude of k unlabeled states

The states with the same amplitude of k unlabeled states
take the form

|ϕ(0)⟩= 1
2
|i′⟩+

√
3

2
√

k

k

∑
i=0,i̸=i′

|i⟩. (19)

These states are useful to study the evolution of the correla-
tions, which have the same amplitude of unlabeled states but
the changed sum to the amplitudes in all unlabeled states. In
Figs. 1–5 we present the correlations of the states |ϕ(r)⟩, gen-
erated by r = 0,1, . . . ,10 iterations with the given form of the
initial states when N = 16. We have the following results.

First, we find τ = 1 when 0 < k < 5, while when 4 <

k < 16, τ = 2. However, the above results are inconsis-
tent with the results that is τ = 3 when N = 16 calculated
by Eq. (6). When the initial state is |φ(0)⟩, one UG has ef-
fects on rotating |φ(0)⟩ by γ to the target state |i′⟩, where

γ = 2arccos
√
(1− 1

N ). The best number of iterations is de-

fined by the statement that τγ + γ

2 ≈ π

2 . While when we take
|ϕ(0)⟩ as the initial state, it is rotated by π around the average
of the initial amplitudes in Eq. (4). Equation (6) does not work
in the circumstances. In Ref. [36], the equality relationship
ai′(r+1) = 2

N (∑ j ̸=i′ a j(r)−ai′(r))+ai′(r) establishes. Obvi-
ously, the following condition is true:(

∑
j ̸=i′

a j(r)−ai′(r)
)

ai′(r)≤ 0 ⇒ P(r+1)≤ P(r). (20)

And determining if r is an extreme needs to satisfy the follow-
ing condition:(

∑
j ̸=i′

a j(r−1)−ai′(r−1)
)(

∑
j ̸=i′

a j(r)−ai′(r)
)
> 0. (21)

Second, there is an almost same period since P(6) closes
to (ai′(0))2, but is not equal. In the above subsection, ai′(0) =
−ai′(3) when N = 4. The amplitudes before r = 7 are given in
Table 2. We can verify that the success probability is no strict
periodicity with the initial states listed when N = 16.

Third, we find that correlations reach the maximum when
r = 3 or r = 10. It is possible that larger values will be obtained
after more iterations. In Ref. [18], the correlations repeat the
process that is firstly increase and then decrease twice, yet the
curves of P just repeat once. This pattern becomes apparent
when we focus on a complete ascending and descending curve
of P.
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Table 2. The amplitudes in all states when N = 16.

r 0 1 2 3 4 5 6

ai′ (r)
1
2

√
3k+7
24

7
√

3k+17
26

33
√

3k+7
28

119
√

3k−223
210

302
√

3k−1673
212

220
√

3k−8143
214

a j0 (r) 0

√
3k−1
24

−
√

3k−7
26

9
√

3k−33
28

−49
√

3k−119
210

25
√

3k−305
212

−1088
√

3k−231
214

a j1 (r)

√
3

2
√

k
a j0 (1)−

√
3

2
√

k
a j0 (2)+

√
3

2
√

k
a j0 (3)−

√
3

2
√

k
a j0 (4)+

√
3

2
√

k
a j0 (5)−

√
3

2
√

k
a j0 (6)+

√
3

2
√

k

2 4 6 8 100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 100
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(c)(b)

r

P
↪C
↪D

(a)

P
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r
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4.2.2. The general n-qubit states

Consider a random pure state with the form of Eq. (3).
Since the calculations of concurrence and quantum discord
both depend on the reduced density matrix, we analyze the am-
plitudes consisting of the elements of the matrix when N → ∞.
The weighted averages of the two sets satisfy the following
recursion equations:(

Ā′(r)
B̄′(r)

)
=

(
N−2

N
2N−2

N

− 2
N

N−2
N

)r(
Ā′0)
B̄′(0)

)
, (22)

where the weighted averages are respectively expressed as[42]

Ā′(r) =
√

Nai′(r), B̄′(r) =

√
N ∑i̸=i′ ai(r)

N −1
. (23)

It is obvious that in the limit of N → ∞ the matrix could be
expressed as (

1 2
0 1

)r

=

(
1 2r

0 1

)
. (24)

We use the above matrix in order to obtain the following equa-
tion:

Ā′(r) = Ā′(0)+2rB̄′(0), B̄′(r) = B̄′(0),

that indicates the sum up to the amplitudes of the unlabeled
states remains nearly unchanged. Just only when 2/N is very
closed to zero, we can ignore the sign which could make the
elements negative. Thus, the success probability increases
slowly, since τ → ∞. If we ideally assume that they are con-
stant, then only the values in terms of the amplitude of the
target state in the reduced density matrix will change. Sup-
pose

σ(r) =
∑i̸=i′ ai(0)

N −1
2r, mod (i′,4) = 0,

the reduced density matrix takes the form of ρ(r) = ρ(0)+
ρ̂(r), where

ρ̂(r) =


σ(r)2 +2ai′(0) σ(r)ai′+1(0) σ(r)ai′+2(0) σ(r)ai′+3(0)

σ(r)ai′+1(0) 0 0 0
σ(r)ai′+2(0) 0 0 0
σ(r)ai′+3(0) 0 0 0

 . (25)

Regard ρ̂(r) as the perturbation term caused by the increas-
ing number of iterations. So we get the matrix ρ̃(r) = (σy ⊗
σy)(𝜌(0)+ ρ̂(r))†(σy ⊗σy) relevant to concurrence. Because
matrix multiplication is distributive, it is obvious that ρ̃(r) =
(σy⊗σy)𝜌(0)

†(σy⊗σy)+(σy⊗σy)ρ̂
†(σy⊗σy). However, we

cannot obtain λA+λB = λA+B in the case that the eigenvectors
of A and B cannot be determined to be equal. The same is true
that the equation λρ(0)+λρ̂(r) ̸= λρ(0)+ρ̂(r) makes the detailed
discussion difficult for quantum discord.

However, it is worth noting that each entry in the matrix
ρ̂(r) is related to the function σ(r). According to the initial
state, the function has the relation of inequality described as

0 ≤ σ(r)≤ ∑
i̸=i′

ai(0). (26)

That is, the perturbation term is constrained by the initial state,
in the sense that ρ̂(r) has very little effect on the concurrence

and quantum discord if r ≪ n. Under the circumstances, they
still remain the cyclical trend. As r gets closer and closer to
n, σ(r) is growing closer to ∑i̸=i′ ai(0). In that limit, ρ̂(r) is
almost the numerical matrix whose elements are completely
determined by the initial states. One situation can be foreseen
that the trend of the correlations may still remain periodic, but
their values would change.

5. Conclusion
In this paper, we focused on the correlations in the

search algorithm with any given initial states |ϕ(0)⟩. Concur-
rence and quantum discord were applied to characterize pure
multiple-qubit states. The suitable bases were developed to
perform analytically the reduced density matrix crucial to the
correlations. We calculated the correlations of the intermedi-
ate states obtained in the evolution of Grover’s algorithm using
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different initial states. It was found that the initial states affect
the correlations and the limit point of the correlations in the
searching process. However, the initial states do not influence
the whole cyclical trend. In addition, a very important conclu-
sion was that although the arbitrary initial states will reduce
the success probability, it will almost reach 100% when the
initial state meets certain conditions that we calculate when
N = 4. In this case, correlations are relatively small compared
with P(r). With the general initial states, the evolution of cor-
relations and the conditions to make Pmax = 1 are also worth
exploring.
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