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We investigate the nonlocal advantage of quantum coherence (NAQC) and entanglement for two spins coupled via
the Heisenberg interaction and under the intrinsic decoherence. Solutions of this decoherence model for the initial spin-1/2
and spin-1 maximally entangled states are obtained, based on which we calculate the NAQC and entanglement. In the weak
region of magnetic field, the NAQC behaves as a damped oscillation with the time evolves, while the entanglement decays
exponentially (behaves as a damped oscillation) for the spin-1/2 (spin-1) case. Moreover, the decay of both the NAQC and
entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some
decoherence-rate-determined optimal values.
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1. Introduction
Quantum coherence originates from the superposition

principle of the basis states, and it is different from that of the
interference phenomenon in classical physics. Among the var-
ious characterizations of quantumness (e.g., entanglement,[1]

quantum discord,[2] etc.), quantum coherence is the the most
fundamental one, and in some sense, the essence of quantum
correlations,[3,4] although it characterizes quantumness of the
whole system S, whereas quantum correlations are related to
the interrelation between subsystems of S. Moreover, quan-
tum coherence is an indispensable resource for achieving the
quantum advantage of quantum computation, quantum com-
munication, and quantum metrology tasks.[5]

Due to its fundamental role in the basic theory of quan-
tum mechanics and applications in new quantum technolo-
gies, it is necessary to quantify coherence. In 2014, Baum-
gratz and his coauthors[6] constructed a resource theoretic
framework of coherence, and proposed to quantify the amount
of coherence in a state ρ by its “shortest distance” to the
set of incoherent states. Some well-defined measures within
such a framework include the l1 norm and relative entropy of
coherence,[6] the entanglement-based coherence measures,[7]

the robustness of coherence,[8] the intrinsic randomness of
coherence,[9] the coherence of formation,[10] the maximum
relative entropy of coherence,[11] and the skew information
measure of coherence.[12] There are also several coherence

measures defined within slightly different frameworks, see
Ref. [4].

Based on the above measures, researchers further ana-
lyzed quantitatively the role of quantum coherence in specific
quantum computational tasks. Some notable progresses in-
clude the advantage of quantum state merging,[13] determin-
istic quantum computation with one qubit,[14] the Deutsch–
Jozsa algorithm,[15] the Grover search algorithm,[16] and the
phase discrimination tasks.[8,11,12] Quantum coherence is also
a resource for enhancing efficiency of the quantum heat
engine.[17] As a fundamental concept in quantum theory, it
has also been used to interpret the wave-particle duality[18,19]

and various form of quantum correlations such as quantum
entanglement[7,20] and quantum discord.[20–23]

From a practical point of view, decoherence remains
a main obstacle for carrying out quantum computation
tasks, and different systems may face different sources of
decoherence.[5] Hence it is significant to give a quantitative
description of the decoherence process. The various coher-
ence measures facilitate the development of such a task. In
recent years, some studies, including the quantitative analy-
ses of the decoherence process of different systems,[24–27] the
evolution equation of coherence under completely positive and
trace preserving operations,[28] and the conditions for freez-
ing coherence,[29–32] have been performed. Effects of active
operations on coherence, such as the coherence-preserving
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operations,[33] the cohering power of a channel,[34–36] and the
energy cost for creating coherence,[37] have also been dis-
cussed.

In this work, we explore the nonlocal advantage of
quantum coherence (NAQC) and entanglement under in-
trinsic decoherence.[38] The NAQC was defined based
on steered coherence under local operations and classical
communication.[39,40] It reveals a kind of quantum correlation
which is stronger than entanglement (it is also stronger than
Bell nonlocality for the two-qubit states[41]). The shareability
of NAQC by sequential observers,[42] its role in studying quan-
tum criticality of the spin systems,[43] and its behavior under
noisy channels,[44–46] have been explored. For two spins un-
der intrinsic decoherence, we will show that the decay of both
the NAQC and entanglement can be noticeably suppressed by
tuning the system parameters to appropriate values.

2. Measures of NAQC and entanglement
As a preliminary, we recall how to quantify NAQC

and entanglement in a (d× d)-dimensional state ρAB. First,
the NAQC was defined based on the resource theory of
coherence,[6] and one can obtain different criteria for captur-
ing NAQC in ρAB by using different coherence measures.[39]

We will use the relative entropy of coherence which has a clear
physical interpretation.[10] For a d-dimensional state ρ , it was
defined to be the relative entropy S(ρ‖δ ) minimized over all
d-dimensional diagonal density operator δ in the reference ba-
sis {|i〉}, and can be solved analytically as[6]

C{|i〉}re (ρ) = S(ρd)−S(ρ), (1)

where ρd = ∑i〈i|ρ|i〉|i〉〈i|, S(ρd) =− tr(ρd log2 ρd) is the von
Neumann entropy of ρd , and likewise for S(ρ).

Based on Eq. (1), one can derive the criterion for cap-
turing NAQC. There are two different frameworks related to
such a problem, both of which are formulated by first mea-
suring one of the mutually unbiased observables {Ak} (e.g.,
Ai) on party A and then calculating the average coherence
of the ensemble {ρB|Aa

i
, pa|Ai}, with pa|Ai being the proba-

bility of obtaining the outcome a and ρB|Aa
i

the correspond-
ing postmeasurement state of B. But for the first framework,
the coherence of ρB|Aa

i
is calculated with respect to the ba-

sis spanned by the eigenbasis of A j 6= Ai and then being av-
eraged over all A j 6= Ai,[39] while for the second framework,
it is calculated only with respect to the optimal basis spanned
by the eigenbasis of Aα̃i , with {Aα̃i} being a permutation of
the set {Ak} which gives the maximum average coherence of
{ρB|Aa

i
, pa|Ai}, i.e., one should maximize the average coher-

ence of {ρB|Aa
i
, pa|Ai} over all possible permutations of the set

{Ak}.[40] As the criterion formulated within the second frame-
work captures a wider region of NAQC states than that formu-
lated within the first framework,[40] we will make use of it in

this paper. Then the criterion for capturing the NAQC in ρAB

can be obtained as

C̃na
re (ρAB) = ∑

i,a
pa|AiC

Aα̃i
re (ρB|Aa

i
)>Cm

re, (2)

where the bound Cm
re was given in Refs. [39,40], e.g., Cm

re '
2.2320 for d = 2 and Cm

re ' 5.0065 for d = 3. For the two-
qubit case, the NAQC has been observed experimentally in an
optics-based platform.[47]

Next, we recall the entanglement measure negativity
which was introduced by Vidal and Werner[48] and was de-
fined as

N(ρAB) =

∥∥∥ρ
TA
AB

∥∥∥
1
−1

2
, (3)

where ‖X‖1 = tr(X†X)1/2 denotes the trace norm of X , and
the superscript TA in ρ

TA
AB denotes the partial transpose of ρAB

with respect to the subsystem A. Such a measure characterizes
the degree of violation of the positive partial transpose (PPT)
criterion which is a necessary separability condition [it is also
sufficient for the (2×2)- and (2×3)-dimensional states].

3. The intrinsic decoherence model
We consider the intrinsic decoherence model, for which

the equation of motion for a system described by the Hamilto-
nian Ĥ is given by[38]

dρ

dt
=

1
γ

(
e−iγĤ

ρ e iγĤ −ρ

)
, (4)

and it is formulated based on the hypothesis that on sufficiently
short time steps, the system will evolves in a stochastic se-
quence of identical unitary transformation instead of evolving
continuously and unitary in the whole evolution process, and
the decoherence rate γ is proportional to this minimum time
step.[38]

3.1. Solution of the model

The decoherence model of Eq. (4) is usually solved by ex-
panding its right-hand side (RHS) to the first order in γ , which
yields

dρ

dt
=−i[Ĥ,ρ]− γ

2
{Ĥ2,ρ}+ γĤρĤ, (5)

where [ ] and { } denote, the commutator and anticommutator,
respectively. Then by denoting {𝜖k} and {|ψk〉} the eigenval-
ues and eigenstates of Ĥ, respectively, and akl = 〈ψk|ρ(0)|ψl〉,
with ρ(0) being the initial state, equation (5) can be solved
as[49]

ρ
(1)(t) = ∑

kl
akl e−it(𝜖k−𝜖l)− 1

2 γt(𝜖k−𝜖l)
2 |ψk〉〈ψl |, (6)

where ρ(1)(t) is introduced for distinguishing the solutions
of Eq. (4) with its RHS being expanded to different orders
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in γ . Based on this solution, decay of Bell nonlocality,[50]

entanglement,[51–53] and entropic uncertainty,[54,55] have been
extensively investigated.

By further expanding the RHS of Eq. (4) to the order of
γ2, one has

dρ

dt
= −i

[
Ĥ,ρ

]
− γ

2
{

Ĥ2,ρ
}
+ γĤρĤ

+
1
6

iγ2{Ĥ3,ρ
}
+

1
2

iγ2 [ĤρĤ, Ĥ
]
, (7)

and similarly to Eq. (5), this equation can be solved as

ρ
(2)(t)=∑

kl
akl e−it(𝜖k−𝜖l)−1

2 γt(𝜖k−𝜖l)
2+1

6 iγ2t(𝜖k−𝜖l)
3 |ψk〉〈ψl |. (8)

Apart from expanding the RHS of Eq. (4) to different or-
ders in γ , one can also transform it into the following form:[56]

dρ̃

dt
= Λ̃ ρ̃, (9)

where ρ̃ is a column vector with the elements ρ̃(i−1)d+ j = ρi j

(i, j = 1,2, . . . ,d and d = dimρ). Moreover, Λ̃ is a (d2×d2)-
dimensional matrix constructed from the RHS of Eq. (4). To
be explicit, by defining

Λ
(i j) =

1
γ

(
e−iγĤ

ρ
(i j) e iγĤ −ρ

(i j)
)
, (10)

with ρ(i j) being a (d × d)-dimensional matrix with one ele-
ment of 1 in the i-th row and j-th column and all the other
elements are zero, then the elements of Λ̃ can be obtained as

Λ̃d(k−1)+l,d(i−1)+ j = Λ
(i j)
kl (i, j,k, l = 1,2, . . . ,d). (11)

The solution of Eq. (9) can be written formally as

ρ̃(t) = eΛ̃ t
ρ̃(0), (12)

and the elements of ρ(t) are given by ρi j(t) = ρ̃d(i−1)+ j(t).
Different from ρ(1)(t) and ρ(2)(t), the accuracy of the solution
ρ(t) depends on the accuracy for diagonalizing Ĥ and Λ̃ .

The NAQC of the thermal states of various spin systems
has been studied.[57–59] In this paper, we focus on the intrinsic
decoherence effects on NAQC of the spin system. We consider
the following Hamiltonian (in units of h̄):

Ĥ = J(sx
1sx

2 + sy
1sy

2 +∆sz
1sz

2)+B(sz
1 + sz

2), (13)

where sx,y,z
n are the spin-s operators at site n, J is the coupling

strength of two spins, ∆ characterizes anisotropy of the cou-
pling, and B is the transverse magnetic field.

We consider the cases of s = 1/2 and 1, for which Ĥ can
be diagonalized exactly, thus the accuracy of the solution ρ(t)
depends solely on the diagonalization of Λ̃ . For s = 1/2, the
eigenvalues and eigenvectors of Ĥ can be derived as

𝜖1,2 =−
1
4

J∆ ± 1
2

J, 𝜖3,4 =
1
4

J∆ ±B,

|ψ1,2〉=
1√
2
(|01〉± |10〉), |ψ3〉= |00〉, |ψ4〉= |11〉, (14)

and for s = 1, by denoting η =
√

∆ 2 +8, the eigenvalues and
eigenvectors of Ĥ can be obtained as

𝜖1,2 =−
1
2

J∆ ± 1
2

Jη , 𝜖3,4 = B± J, 𝜖5 =−J∆ ,

𝜖6,7 =−B± J, 𝜖8,9 = J∆ ±2B,

|ψ1,2〉=

√
2

η(η±∆)

(
|02〉+ ∆ ±η

2
|11〉+ |20〉

)
,

|ψ3,4〉=
1√
2
(|01〉± |10〉), |ψ5〉=

1√
2
(|02〉− |20〉),

|ψ6,7〉=
1√
2
(|12〉± |21〉), |ψ8〉= |00〉, |ψ9〉= |22〉. (15)

3.2. Comparison of the different solutions

To compare the accuracy of the solutions ρ(1)(t), ρ(2)(t),
and ρ(t), we consider the following initial states:

|Ψ〉1/2=
1√
2
(|00〉+|11〉), |Ψ〉1=

1√
3
(|00〉+|11〉+|22〉), (16)

where |Ψ〉1/2 (|Ψ〉1) is for the spin-1/2 (spin-1) case. We con-
sider the two states for they are useful in quantum information
processing tasks such as quantum teleportation.[60,61]

0
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0
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B=5.0
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B=0.5
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Fig. 1. ‖ρ − ρ(1)‖1 and ‖ρ − ρ(2)‖1 versus t for the initial states |Ψ〉1/2
(solid black) and |Ψ〉1 (dashed red) with different B. The other parameters
are given by J = 1, ∆ = 0, and γ = 0.1.

First, for the spin-1/2 case, the four nonzero akl are given
by a33,34,43,44 = 1/2. As a consequence, one can obtain from
Eqs. (6), (8), and (14) that both ρ(1)(t) and ρ(2)(t) are inde-
pendent of ∆ . As for the solution ρ(t), although Λ̃ is a func-
tion of ∆ , ρ̃(t) is determined only by the elements of Λ̃ lie
in the ith column with i ∈ {1,4,13,16} due to the specific
form of ρ̃(0), and by using Eqs. (10) and (11), one can ob-
tain that the elements lie in the first and 16th columns of Λ̃ are
all zero, while the only nonzero element lies in its fourth col-
umn is Λ̃4,4 = (e−2iBγ −1)/γ and that lies in its 13th column
is Λ̃13,13 = Λ̃ ∗4,4, then one can obtain analytically that

ρ(t) =
1
2

(
|00〉〈00|+ |11〉〈11|

070307-3



Chin. Phys. B Vol. 30, No. 7 (2021) 070307

+ eΛ̃4,4t |00〉〈11|+ eΛ̃13,13t |11〉〈00|
)
, (17)

so ρ(t) is also independent of ∆ . One can also note that ρ(1)(t)
and ρ(2)(t) are in fact the first and second order approxima-
tions of ρ(t), as one has Λ̃4,4 ' −2iB− 2B2γ + 4B3γ2/3 by
expanding it to the second order in γ . By using the trace norm
to evaluate the accuracy of different solutions, one can obtain

∥∥∥ρ−ρ
(n)
∥∥∥

1
=

∣∣∣∣∣exp
(
Λ̃4,4t

)
−exp

(
n

∑
k=1

(−2iB)kγk−1t
k!

)∣∣∣∣∣ , (18)

from which one can see that ρ(1)(t) and ρ(2)(t) may yield in-
accurate results for certain B, see, e.g., the solid lines showed
in Fig. 1. Moreover, when Bγ = kπ (k ∈ Z), one has Λ̃4,4 = 0,
so ρ(t) will remain unchanged. But it should note that such an
observation does not hold for a general initial state.

For the spin-1 case, as the dimension of Λ̃ is still rela-
tively small, it can be diagonalized numerically. In Fig. 1, we
show the time dependence of the trace norm ‖ρ −ρ(1)‖1 and
‖ρ −ρ(2)‖1 with ∆ = 0 and different B. In the long-time re-
gion, one can see that the three solutions are approximately
the same. In the short-time region, however, the accuracy of
ρ(1)(t) and ρ(2)(t) are relatively low. So when using them as
solutions of Eq. (4), one should pay attention to their accuracy.

4. Dynamics of NAQC and negativity
In this section, we use ρ(t) obtained from Eq. (12) to

calculate the time-evolved NAQC and negativity, and explore
their decay behaviors for the initial states of Eq. (16). Oc-
casionally, we also give some intuitive analysis by using the
approximate solutions of Eqs. (6) and (8).

4.1. The NAQC

For the spin-1/2 case, we show in Fig. 2 the t dependence
of C̃na

re (ρ) with different strengths of B and the B dependence
of C̃na

re (ρ) at different times t. One can see that C̃na
re (ρ) behaves

as a damped oscillation when the time evolves and approaches
to the steady-state value 1 in the limit of t→∞. Such a behav-
ior can be understood from Eq. (17), which gives

eΛ̃4,4t = e−[2sin2(Bγ)+i sin(2Bγ)]t/γ , (19)

that is, the decay of C̃na
re (ρ) is due to the term e−2sin2(Bγ)t/γ

and its oscillation is due to the term e−i sin(2Bγ)t/γ . Moreover,
as the NAQC in ρ(t) is achieved when C̃na

re (ρ) > Cm
re, then as

is shown in the top panel of Fig. 2, the NAQC disappears af-
ter several rounds of damped oscillations. From the bottom
panel of Fig. 2, one can see that the extent to which C̃na

re (ρ)

can be enhanced by tuning B in the weak field region is finite.
But when B is tuned to Bc = lπ/γ (l = 0,1, . . .), one can ob-
tain from Eq. (17) that the state ρ(t) will be the same to the

initial state |Ψ〉1/2, so C̃na
re (ρ) ≡ 3, i.e., ρ(t) is always NAQC

correlated.

0

∼
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1.0

1.4

1.8

2.2

2.6

3.0

t

C
n
a
(ρ
)

re
∼ C
n
a
(ρ
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2.2

2.6

3.0

B

Fig. 2. C̃na
re (ρ) versus t with different B and C̃na

re (ρ) versus B at different
times t for the initial state |Ψ〉1/2. The other parameters are given by J = 1
and γ = 0.1.

Next, we consider the spin-1 Hamiltonian Ĥ and the ini-
tial state |Ψ〉1. Different from that of the spin-1/2 case, the
nonzero coefficients {akl} for the present case correspond to
those k, l ∈ {1,2,8,9}, and the evolved density operator de-
pends on all the involved parameters. In Fig. 3, we display
the dependence of C̃na

re (ρ) on the evolution time t, the trans-
verse magnetic field B, and the anisotropic parameter ∆ . From
these plots, one can see that C̃na

re (ρ) also behaves as a damped
oscillation as the time t evolves, and qualitatively, this could
be understood from the approximate solutions of Eqs. (6)
and (8). But for this case, C̃na

re (ρ) becomes smaller than the
bound Cm

re ' 5.0065 after a very short evolution time tc, e.g.,
tc ' 0.6128 when B = 0, ∆ = 0, and γ = 0.1. Moreover, in the
infinite time limit, as the three solutions are the same, then one
can obtain from Eq. (6) that the steady state ρ(∞) is given by

ρ(∞) = ∑
m,n∈{1,2,8,9}

amnδ𝜖m,𝜖n |ψm〉〈ψn|, (20)

where δ𝜖m,𝜖n is the Kronecker delta, i.e., δ𝜖m,𝜖n = 1 when
𝜖m = 𝜖n and 0 otherwise. Then one can see that C̃na

re (ρ(∞))

depends on J, ∆ , and B. Its maximum is about 4.4686, which
occurs at B = 0 and ∆ = 1, irrespective of J.

Moreover, as can be seen from the bottom panels of
Fig. 3, C̃na

re (ρ) decreases with the increase of B and ∆ in the
relative short-time region (e.g., t = 0.1), and apart from this
short-time region, C̃na

re (ρ) may be enhanced to some extents
by tuning the strengths of B or ∆ to certain appropriate val-
ues in the weak B and ∆ regions, but it cannot exceed the
bound Cm

re ' 5.0065. Furthermore, as for the spin-1/2 case,
it has been shown that when B is tuned to the critical value
lπ/γ (l = 0,1, . . .), C̃na

re (ρ) will remains unchanged during the
evolution process, then it is natural to ask whether such a phe-
nomenon also occurs for the spin-1 case. Our numerical cal-
culation shows that for B = lπ/γ and ∆ is relatively small, the
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dependence of C̃na
re (ρ) on time t is similar to that showed in

the top panel of Fig. 3, thus the extent to which it can be en-
hanced is still finite. But if one can further tune the strength
of the anisotropy to ∆c = 2mπ/γ (m = 1,2, . . .), as is shown
in the top panel of Fig. 4, C̃na

re (ρ) can also be enhanced sig-
nificantly. In particular, the larger the positive integer m, the
larger the enhancement to C̃na

re (ρ). But such an effect is very
sensitive to the deviation of ∆ from ∆c. As can be seen from
the bottom panel of Fig. 4, even a very small deviation of ∆

from ∆c can induce noticeably decrease of C̃na
re (ρ), especially

in the long-time region.
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Before ending this section, we would like to remark that
for the initial state of the form |Φ〉1 = α|00〉+β |22〉 (|α|2 +
|β |2 = 1) and the spin-1 system Hamiltonian with B = 0, one
can obtain from Section 3 that ρ(t) will remains unchanged.
In particular, C̃na

re (ρ) > Cm
re when α ∈ (0.3577,0.9339) and

β = (1−α2)1/2. But its strength is weak, and its maximum is
of about 5.0882, which occurs at α = β = 1/

√
2.

4.2. The negativity

It has been shown that the NAQC captures a kind of quan-
tum correlation stronger than entanglement.[39,40] Then it is
natural to compare decay behaviors of the NAQC with that
of the entanglement of the time-evolved state ρ(t) obtained
within the framework of intrinsic decoherence. In this subsec-
tion, we will consider such a problem, aimed at revealing the
similarities and differences between decay behaviors of these
two different forms of quantum correlations.

We first consider the spin-1/2 case, for which the negativ-
ity of ρ(t) can be obtained analytically as

N(ρ) =
1
2

e−2sin2(Bγ)t/γ , (21)

from which one can obtain that when B = kπ/γ (k = 0,1, . . .),
the negativity N(ρ) of the time-evolved state will remain the
constant value 0.5, irrespective of the evolution time t of the
two spins. For general values of B, however, N(ρ) will decay
exponentially with time and approach to the asymptotic value
0 in the infinite time limit. This indicates that the state ρ(t)
is always entangled for the initial state |Ψ〉1/2. As the NAQC
of ρ(t) disappears after several rounds of damped oscillations
(see Fig. 2), this also confirms the finding that what the NAQC
captures is a type of quantum correlation which is stronger
than quantum entanglement.[39,40]
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∆ = 1 and different t (bottom left), and N(ρ) versus ∆ with B = 0 and dif-
ferent t (bottom right), all for the initial state |Ψ〉1. The other parameters are
given by J = 1 and γ = 0.1.

Next, we consider the spin-1 case for the same initial state
|Ψ〉1 when discussing the NAQC. We calculated numerically
the negativity N(ρ) of ρ(t), and the corresponding exempli-
fied plots are shown in Fig. 5. Similar to C̃na

re (ρ), N(ρ) also
behaves as a damped oscillation with the time evolves and ap-
proaches to its steady-state value when t→ ∞. From Eq. (20),
one can further obtain that the maximum steady-state value is
about 0.7037, which occurs at B = 0 and ∆ = 1. This be-
havior is different from that of the spin-1/2 case for which
N(ρ(∞))= 0. It is also different from that of C̃na

re (ρ(∞)), as the
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entanglement of ρ(∞) maintains finite value and the NAQC of
ρ(∞) disappears completely.

Moreover, in the region of weak (B,∆), as can be seen
from the bottom two panels of Fig. 5, N(ρ) can be increased to
some extent by tuning ∆ and B. When B = lπ/γ (l = 0,1, . . .)
and ∆ = 2mπ/γ (m = 1,2, . . .), similar to the case of C̃na

re (ρ),
N(ρ) can also be enhanced noticeably (we do not give the plots
here for conciseness of the paper).

5. Summary
In summary, we have investigated the decay process of

both NAQC and entanglement for two spins within the frame-
work of intrinsic decoherence, and the two spins are coupled
via the Heisenberg XXZ model. We first presented solutions
ρ(n)(t) of the intrinsic decoherence model by expanding its
decoherence term to the n-th order in γ , and then compared
its accuracy with the solution ρ(t) obtained by introducing a
generalized superoperator. By choosing the initial maximally
entangled states, we obtained analytical result of ρ(t) for the
spin-1/2 case and numerical result of ρ(t) for the spin-1 case,
and showed explicitly that ρ(n)(t) may yield very inaccurate
results under certain circumstances. So we used the solution
ρ(t) in the subsequent investigation of NAQC and entangle-
ment.

For two spins interact via the Heisenberg XXZ model with
weak transverse magnetic field, the NAQC of the initial maxi-
mally entangled states behave as a damped oscillation with the
time t evolves, while the negativity decays exponentially (be-
haves as a damped oscillation) for the spin-1/2 (spin-1) case.
Moreover, we have also shown that for the spin-1/2 case, the
time-evolved state is independent of ∆ and it will be immune
of the intrinsic decoherence if B = lπ/γ (l = 0,1, . . .). For the
spin-1 case, the rapid decay of both NAQC and entanglement
can be noticeably suppressed when B = lπ/γ (l = 0,1, . . .) and
∆ = 2mπ/γ (m = 1,2, . . .). Such a suppression effect can be
strengthened by increasing m. This shows that by tuning the
system parameters to appropriate strengths, the detrimental ef-
fect of intrinsic decoherence can be noticeably suppressed and
the quantum correlations of two spins may be preserved for a
long time.
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