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The high-frequency edge of the first-order Raman mode of diamond reflects the stress state at the culet of anvil, and is
often used for the pressure calibration in diamond anvil cell (DAC) experiments. Here we point out that the high-frequency
edge of the diamond Raman phonon corresponds to the Brillouin zone (BZ) center Γ point as a function of pressure. The
diamond Raman pressure gauge relies on the stability of crystal lattice of diamond under high stress. Upon the diamond
anvil occurs failure under the uniaxial stress (197 GPa), the loss of intensity of the first-order Raman phonon and a stress-
dependent broad Raman band centered at 600 cm−1 are observed, which is associated with a strain-induced local mode
corresponding to the BZ edge phonon of the L1 transverse acoustic phonon branch.
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1. Introduction
Diamond has a cubic crystal structure with space group

Fd-3m, in which two carbon atoms are arranged in the prim-
itive unit cell (Fig. 1(a)). For a perfect crystal, the phonon
modes in the proximity of the center of the Brillouin zone
(BZ) can only be observed owing to the q ≈ 0 selection
rule. Accordingly, the observed first-order Raman phonon at
1332 cm−1 corresponds to the Γ point of BZ center in the di-
amond crystal with F2g symmetry (Fig. 1(b)). Under the uni-
axial stress, the first-order Raman band of diamond exhibits
asymmetry broadening and blue-shift, which is attributed to
the strain effect that violates the translational invariance and
breaks down the phonon wave vector selection rule.[1]
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Fig. 1. (a) The crystal structure of cubic diamond, the black arrows
indicate the Raman vibrational motions F2g. (b) The Brillouin zone of
cubic diamond.

Due to the ultra-high bulk modulus (450 GPa)[2] and
ultra-high hardness (Hv > 110 GPa),[3] diamond single crys-
tals with (100) crystal face are one of the best candidates for
the anvil materials in the high-pressure experiments.[4] The
high-frequency edge of the first-order Raman phonon in di-
amond reflects the stress state at the culet of anvil, and shows

a monotonic pressure dependence of elastic strain. Therefore,
the spectroscopic method based on the stress-induced diamond
phonon is an effective pressure scale (> 100 GPa) in a dia-
mond anvil cell (DAC) experiment.[5] However, the pressure-
dependent shift of the high-frequency edge of diamond Raman
is lack of detailed lattice dynamic analysis.

A new Raman band at ∼ 600 cm−1 was observed in both
the highly-stressed (above 150 GPa) diamond anvil[6] and the
nano-sized diamond particles sample.[7] Both the strain ef-
fect and size effect can be attributed to the disordered Raman
band at ∼ 600 cm−1 in a phonon-confinement system. Typi-
cal examples of these systems include nano-sized crystals,[8,9]

defect and impurity semiconductors,[10–12] highly-stressed[6]

and structural-disordered materials.[13] By applying the re-
laxation of selection rule to all the phonon branches of BZ,
many features like the redshift and the asymmetry broaden-
ing in the Raman spectrum of disordered carbon could be well
explained.[13,14] Despite the progress achieved, the observed
broad Raman band at ∼ 600 cm−1 under highly-stressed con-
dition is still lack of detailed lattice dynamic analysis.

In this work, the Raman scattering from a pair of anvil
diamonds in DAC has been studied at pressure up to 197 GPa.
Up to the maximum pressure, one of the opposed diamond
anvils occurs failure but cannot lead directly to the burst of
anvils, and the other one remains intact that can be used for
pressure calibration by the first-order Raman phonon. In order
to gain a better understanding of phonon behavior in diamond
under extreme conditions, we perform careful lattice dynamic
analysis on the pressure-dependent Raman phonon of anvil di-
amonds by comparing the phonon dispersion curves of the di-
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amond.

2. Experimental details
Raman scattering experiments were carried out on a

custom-built confocal Raman spectrometry system in the
backscattering geometry based on triple grating monochroma-
tor (Andor Shamrock SR-303i-B) with an attached EMCCD
(Andor Newton DU970P-UVB); excitation was achieved by
using a solid-state laser at 532 nm (RGB laser system) with
laser power of 50 mW and collection by a 20×, 0.28 N.A.
objective (Mitutoyo). The spectral resolution was within
±1 cm−1, and the spatial resolution was within ±1 µm.

High-pressure Raman experiments were conducted at
room temperature using a DAC with 50 µm culet (Fig. 2(a))
along the [100] diamond crystallographic direction (Fig. 2(a)).
The diamond anvils were compressed across the rhenium gas-
ket to the maximum pressure (∼ 197 GPa) until plastic de-
formation and micro-cracks occurred on the top of the upper-
anvil diamond. The culet surface of the upper-anvil dia-
mond is no longer flat, exhibiting inhomogeneous light scat-

tering, which is in sharp contrast with the lower-anvil di-
amond that was found still to be intact (Fig. 2(b)). The
strain-induced cracks could not lead directly to the burst of
anvils, but the cell pressure was found to suddenly drop to
approximately 185 GPa. Upon slow decompression, numer-
ous stepped cracks formed around the culets of the upper and
lower anvils (Fig. 2(b)). When the pressure released to ap-
proximately 60 GPa, two intersecting longitudinal cracks were
found in the upper-anvil diamond, with a consequent abrupt
drop in the pressure value. This change indicates plastic de-
formation of the anvil tip, which has been documented for nat-
urally deformed diamonds,[1] but not rarely identified in situ
at high pressure.[6]

In the present study, the pressure was monitored through
the high-frequency edge of the diamond phonon.[5] When the
upper-anvil diamond occurs failure, the pressure calibration of
DAC on decompression is only determined by the intact lower-
anvil diamond. Here, the compressive stress of the upper-anvil
diamond is considered to be equal to that of the lower-anvil di-
amond.
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Fig. 2. (a) Schematic of the DAC geometry. (b) Selected microscope image of the lower- and upper-anvil diamonds on decompression. These
images were acquired with the same light intensity.

3. Results and discussion

Spatially resolved micro-Raman spectra at the anvil tips
provide direct information about the effect of normal stress on
the diamonds. The first-order Raman phonon of diamond ex-
hibits a sharp peak that corresponds to the triply degenerate
optical phonons in the absence of stress. The uniaxial stress
has been considered as the origin of the asymmetric broaden-
ing and blue-shift of the Raman phonon.[15–17] Under normal
conditions, the first-order Raman phonon of anvil diamond
shifts and splits under compression and decompression, mean-
while the second-order Raman phonons can also be clearly

observed, as shown in Fig. 3(a). The cell pressure can be rou-
tinely calibrated by the high-frequency edge of the first-order
Raman phonon.

In a typical ultrahigh-pressure DAC experiment, one of
the two opposite diamonds occurs early failure at the maxi-
mum pressure, unavoidably disabling the pressure calibration
process. In the present experiment, the exhausted upper-anvil
diamond occurs failure at the pressure of 197 GPa. Subse-
quently, the pressure within the cell exhibits a sudden drop to
∼ 185 GPa (the pressure was only determined by the lower-
anvil diamond). As a result, the first-order Raman peak be-
comes very week and the second-order Raman phonon cannot
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be observed (Fig. 3(b)). At the same time, a strong broad peak
centered at (ca.) ∼ 600 cm−1 appears in the low-frequency
region (Fig. 3(b)). Thus, the pressure calibration of DAC
can only be speculated from the intact lower-anvil diamond
(Fig. 3(a)). However, the pressure of the upper and lower
anvils will not be exactly the same, so the pressure of the upper
diamond is an approximate value.

The intensity of the broad-band is directly correlated to
the stress on the anvil. A new broad Raman band at 600 cm−1

and the loss of intensity of the first-order Raman phonon in di-
amond were also observed by Mao et al. at sample pressures
above 150 GPa.[6] Mao et al. considered that there was a close

similarity between the new Raman feature and the one-phonon

density of states of diamond (which has a broad peak cen-

tered at ∼ 600 cm−1). They also considered that the new band

may be associated with the appearance of fluorescence.[6] But

the similar broad Raman band at 600 cm−1 was observed in

nano-sized diamond particles by Yoshikawa et al.[7] So the

fluorescence mechanism was rule out. Both the strain effect

and size effect can result in the low-frequency broad Raman

band at ∼ 600 cm−1, as a matter of fact, it can be explained

by the disordered-activated Raman scattering from a phonon-

confinement system.
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Fig. 3. (a) Pressure dependent Raman spectra of the lower-anvil diamond. (b) Pressure dependent Raman spectra of the upper-anvil diamond.

Figure 4(a) shows the pressure-dependent Raman spectra
of the upper-anvil diamond collected during decompression.
As the pressure decreases, the low-frequency Raman band red-
shifts and becomes weaker in intensity (Fig. 4(b)), while the
first- and second-order diamond Raman modes have gradually
recovered (Figs. 3(b) and 4(a)). At pressure below 100 GPa,
the low-frequency mode becomes very weak; and at pressure
below 60 GPa, the low-frequency mode almost disappears,
but the first- and second-order Raman modes are clearly ob-
served (Fig. 3(b)). It is shown that the low-frequency Raman
broad band ca. 600 cm−1 exhibits pressure dependence. The
emergence of such a local phonon is attributed to the strain-
induced phonon confinements. The Raman selection rule is
broken and the off-zone-center phonon modes are allowed.
The disordered-activated Raman modes ca. 600 cm−1 were

also observed in the doped diamond.[6,7] By comparing the vi-

brational frequency, the observed local phonon is consistent

with the low-frequency phonon density of states (PDOS) of

the perfect diamond (Fig. 4(a)). The PDOS is defined as the

contribution from a given atom to the total phonon, describ-

ing the number of states per an interval of energy at each en-

ergy level available to be occupied. The disordered-activated

phonon modes in disordered materials can be expressed by the

PDOS of a corresponding perfect structure. Such a correla-

tion could imply a breakdown in crystalline selection rules, re-

sulting perhaps from growth of defects (stacking faults) at the

anvil tips associated with macroscopic flow of the diamond, or

from the formation of a new high-density amorphous form of

carbon.[6]
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Fig. 4. (a) Pressure dependent Raman spectra of upper-anvil diamond on decompression. The black, red, and blue curves at the lower part
represent the calculated PDOS[2] of diamond at 0 GPa, 100 GPa, and 200 GPa, respectively. (b) The full width at half maxima (FWHM) (black)
and relative intensity (red) of local phonon as a function of pressure. (c) Phonon dispersion curves of diamond at T = 300 K, P = 200 GPa
in different directions,[2] both the edge point L1 and center point Γ are circled. (d) Comparison of experimental and calculated vibration
frequencies for the edge point L1 and center point Γ .

The high-frequency edge of the first-order Raman phonon
of the diamond, which is often used to the pressure calibra-
tion, corresponds to the BZ center Γ point (Fig. 4(c)), and
the high-frequency phonon edge of the first-order diamond
exhibits very similar pressure dependence with the Γ point
(Fig. 4(d)). The diamond Raman pressure gauge relies on the
stability of crystal lattice of diamond under high stress. Plastic
deformation induced by high stress leads to the inaccuracy and
systematic deviation in the pressure calibration. By comparing
with the calculated phonon dispersion curves of the diamond at
300 K, 200 GPa,[2] the observed low-frequency broad Raman
mode corresponds to the strain-induced zone-edge phonon of
the L1 transverse acoustic phonon branch (Fig. 4(c)). Both the
experimental and calculated values shift to lower energy with
decreasing pressure (Fig. 4(d)). It is also noted that the L1 zone
edge branch corresponds to the [100] direction of the diamond
(Fig. 1(b)), which corresponds to the experimental stress load-

ing direction in the DAC (Fig. 2(a)).

4. Conclusion

We studied the pressure-dependent disordered Raman
phonon behaviors of anvil diamond to 197 GPa, and observed
a broad Raman mode centered at 600 cm−1 at the pressure
above 100 GPa. The high-frequency edge of the first-order
Raman phonon and the low-frequency broad Raman phonon
were found to correspond to the zone center Γ point and the
zone edge L1 point, respectively. The diamond Raman pres-
sure gauge relies on the stability of crystal lattice of diamond
under high stress.
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