

Structural and electrical transport properties of Cu-doped Fe1-xCuxSe single crystals

He Li(李贺)^{1,2}, Ming-Wei Ma(马明伟)^{2,3,*}, Shao-Bo Liu(刘少博)^{2,4}, Fang Zhou(周放)^{2,3,4}, and Xiao-Li Dong(董晓 莉)^{2,3,4}

Citation: Chin. Phys. B, 2020, 29 (12): 127404. DOI: 10.1088/1674-1056/abc3af Journal homepage: <u>http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb</u>

What follows is a list of articles you may be interested in

Robust two-gap strong coupling superconductivity associated with low-lying phonon

modes in pressurized Nb₅Ir₃O superconductors

Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko Chin. Phys. B, 2019, 28 (**10**): 107401. DOI: 10.1088/1674-1056/ab4047

Crystal structures and sign reversal Hall resistivities in iron-based superconductors

$Li_x(C_3H_{10}N_2)_{0.32}$ FeSe (0.15 < x < 0.4)

Rui-Jin Sun(孙瑞锦), Shi-Feng Jin(金士锋), Jun Deng(邓俊), Mu-Nan Hao(郝木难), Lin-Lin Zhao(赵琳琳), Xiao Fan(范晓), Xiao-Ning Sun(孙晓宁), Jian-Gang Guo(郭建刚), Lin Gu(谷林) Chin. Phys. B, 2019, 28 (6): 067401. DOI: 10.1088/1674-1056/28/6/067401

Tunable superconductivity in parent cuprate $Pr_2CuO_{4\pm\delta}$ thin films

Xinjian Wei(魏鑫健), Ge He(何格), Wei Hu(胡卫), Xu Zhang(张旭), Mingyang Qin(秦明阳), Jie Yuan(袁洁), Beiyi Zhu(朱北沂), Yuan Lin(林媛), Kui Jin(金魁) Chin. Phys. B, 2019, 28 (5): 057401. DOI: 10.1088/1674-1056/28/5/057401

Observation of selective surface element substitution in FeTe_{0.5}Se_{0.5} superconductor thin

film exposed to ambient air bysynchrotron radiation spectroscopy

Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西) Chin. Phys. B, 2016, 25 (9): 097402. DOI: 10.1088/1674-1056/25/9/097402

Photoemission study of iron-based superconductor

Liu Zhong-Hao, Cai Yi-Peng, Zhao Yan-Ge, Jia Lei-Lei, Wang Shan-Cai Chin. Phys. B, 2013, 22 (8): 087406. DOI: 10.1088/1674-1056/22/8/087406

RAPID COMMUNICATION

Structural and electrical transport properties of Cu-doped Fe_{1-x}Cu_xSe single crystals^{*}

He Li(李贺)^{1,2}, Ming-Wei Ma(马明伟)^{2,3,†}, Shao-Bo Liu(刘少博)^{2,4}, Fang Zhou(周放)^{2,3,4}, and Xiao-Li Dong(董晓莉)^{2,3,4}

¹ International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

² Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ³ Songshan Lake Materials Laboratory, Dongguan 523808, China

⁴University of Chinese Academy of Sciences, Beijing 100049, China

(Received 4 August 2020; revised manuscript received 22 September 2020; accepted manuscript online 22 October 2020)

We report the structural and electrical transport properties of $Fe_{1-x}Cu_xSe$ (x = 0, 0.02, 0.05, 0.10) single crystals grown by a chemical vapor transport method. Substituting Cu for Fe suppresses both the nematicity and superconductivity of FeSe single crystal, and provokes a metal-insulator transition. Our Hall measurements show that the Cu substitution also changes an electron dominance at low temperature of un-doped FeSe to a hole dominance of Cu-doped $Fe_{1-x}Cu_xSe$ at x = 0.02 and 0.1, and reduces the sign-change temperature (T_R) of the Hall coefficient (R_H).

Keywords: iron-based superconductivity, crystal growth, element substitution, Hall coefficient

PACS: 74.25.F-, 74.62.Dh, 81.10.Bk, 74.70.-b

1. Introduction

The structurally simplest FeSe exhibits distinctive normal-state properties among the iron-based superconductors and is therefore important for investigating the underlying physics of the superconductivity.^[1] Its superconducting transition temperature $T_{\rm C} = 8$ K at ambient pressure,^[2] which can be raised to 37 K by high pressure of 8 GPa, $^{[3]}$ to ~ 40 K by alkali-metal^[4–7] or small molecule intercalation.^[8,9] and even above 65 K in one-unit-cell film on SrTiO₃.^[10] FeSe undergoes a nematic transition at $T_s = 90$ K which is rapidly suppressed by pressure and can be tuned continuously by isoelectronic S or Te substitution at Se site of FeSe.^[11-13] Furthermore, with increasing pressure, the low- $T_{\rm C}$ superconducting phase transforms into the high- $T_{\rm C}$ phase, where the normalstate Hall resistivity changes sign from negative to positive, demonstrating a hole dominance in contrast to other FeSederived high-T_C systems.^[14] Recently, the observation of non-Fermi liquid property in $\text{FeSe}_{1-x}S_x$ and the topological nature of $\text{FeSe}_{1-x}\text{Te}_x$ have triggered renewed interest.^[15,16] Besides isoelectronic S and Te substitution at Se site, transition elements substitution at Fe site of FeSe would be also of interest for their comparable ionic sizes to Fe and the potential to tune the carrier type and concentration or investigate magnetic or non-magnetic impurity effect on superconductivity.[17-24]

Earlier studies of Cu-substituted FeSe powder samples show that Cu substitution at Fe site in FeSe suppresses superconductivity and provokes a metal–insulator transition.^[21,22] DOI: 10.1088/1674-1056/abc3af

Under a relatively small pressure of 1.5 GPa, superconductivity in $Cu_{0.04}Fe_{0.97}$ Se is restored below 6.6 K; and T_C is increased to its maximum of 31.3 K upon an applied pressure at 7.8 GPa.^[23] Detailed Mössbauer spectroscopy studies on the 57 Fe-enriched Cu_{0.04}Fe_{0.97}Se powder sample reveal that part of the iron sites are magnetically ordered at low temperature, and the static magnetic moments destroy the superconducting pairing. Raising pressure leads to a collapse of the static magnetism and restoration of superconductivity with the maximal $T_{\rm C}$ value at 8 GPa.^[24] In contrast to the extensive studies on the intrinsic properties of isoelectronically substituted $\text{FeSe}_{1-x}S_x$ and $\text{FeSe}_{1-x}\text{Te}_x$ due to the availability of high-quality single crystals,^[1] few study of transition elements substitution effect is reported in FeSe single crystals. In the present paper, we report the structural and electrical transport properties of $Fe_{1-x}Cu_xSe$ (x = 0–0.10) single crystals. Cu substitution suppresses both the nematicity and superconductivity of the FeSe single crystal, provokes a metal-insulator transition, changes an electron dominance at low temperature of un-doped FeSe to a hole dominance of Cu-doped $Fe_{1-x}Cu_xSe$ at x = 0.02 and 0.1, and reduces the sign-change temperature (T_R) of the Hall coefficient ($R_{\rm H}$).

2. Experiments

A series of $\text{Fe}_{1-x}\text{Cu}_x\text{Se}$ (x = 0, 0.02, 0.05, 0.10) single crystals were grown by a chemical vapor transport method, us-

*Project supported by the National Key Research and Development of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant No. 11834016), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).

[†]Corresponding author. E-mail: mw_ma@iphy.ac.cn

^{© 2020} Chinese Physical Society and IOP Publishing Ltd

ing high-purity Fe, Cu, Se powders as raw materials and mixture of AlCl₃ and KCl as transport agent.^[25] The temperature of the hot and cold positions was kept at 400 °C and 350 °C, respectively. After a duration of 30 days, single crystals with a size of 3–5 mm were grown around the cold part of the quartz tube. The experimental details are given in Table 1.

Table 1. Experimental details for growing $Fe_{1-x}Cu_xSe$ single crystals.

Nominal	Transport agent	$T_{\rm hot} - T_{\rm cold}$	Actual
composition	mole ratio		composition
FeSe _{0.94}	$AlCl_3:KCl = 3:1$	400 °C-350 °C	FeSe
Fe _{0.95} Cu _{0.05} Se _{0.94}	$AlCl_3:KCl = 3:1$	400 °C-350 °C	Fe _{0.98} Cu _{0.02} Se
Fe _{0.9} Cu _{0.1} Se _{0.94}	$AlCl_3:KCl = 3:1$	400 °C-350 °C	Fe _{0.95} Cu _{0.05} Se
Fe _{0.8} Cu _{0.2} Se _{0.94}	AlCl ₃ :KCl = 3:1	400 °C–350 °C	Fe _{0.9} Cu _{0.1} Se

The actual chemical composition of $Fe_{1-x}Cu_xSe$ single crystals was determined by inductively coupled plasma atomic emission spectroscopy. The x-ray diffraction (XRD) measurements were performed on the x-ray diffractometer (MXP18A-HF) used copper K_{α} radiation. Electrical transport measurements up to 9 T were performed on a Quantum Design PPMS-9 system.

3. Results and discussion

The results of powder XRD at room temperature demonstrate that the Fe_{1-x}Cu_xSe single crystals are of single phase and all the diffraction peaks can be well indexed with a previously reported tetragonal structure, ^[21,22] as shown in Fig. 1(a). Figure 1(b) shows the single crystal XRD patterns for all the Fe_{1-x}Cu_xSe (x = 0, 0.02, 0.05, 0.10) single crystals. Only (0 0 *l*) reflections are observed, indicating that the single crystals are in perfect (0 0 1) orientation. Figure 1(c) shows the lattice parameters *a* and *c* as functions of the Cu doping level. With increasing Cu content, the lattice parameter *a* increases monotonically, while *c* decreases monotonically, consistent with previous reports.^[21,22] As displayed in Fig. 1(d), the unit cell volume $V = a^2c$ increases linearly with increasing Cu content.

Fig. 1. (a) Powder XRD patterns for $\text{Fe}_{1-x}\text{Cu}_x\text{Se.}$ (b) Single crystal XRD for $\text{Fe}_{1-x}\text{Cu}_x\text{Se.}$ (c) Variation of refined lattice parameters *a* and *c* with Cu doping level *x*. (d) Variation of unit cell volume $V = a^2c$ with Cu doping level *x*.

Figure 2 shows the temperature dependence of the normalized electrical resistivity $\rho(T)/\rho(300 \text{ K})$ and specific heat measured for Fe_{1-x}Cu_xSe (x = 0, 0.02, 0.05, 0.10) single crystals. Pure FeSe is superconducting at $T_{\rm C} = 8.3$ K and the kink at $T_{\rm s} = 90$ K in the resistivity curve represents the nematic transition, which is more clearly visible from a dip in the temperature derivative of the resistivity as shown in the inset of Fig. 2(a) and a jump in the specific heat as displayed in Fig. 2(b). A small Cu doping of 2% can completely suppress the superconductivity and nematicity, as no such kink and jump can be found in the resistivity and specific heat measurements, respectively [Figs. 2(a) and 2(b)]. While the resistivity of FeSe in the normal state demonstrates a metallic behavior, an upturn with decreasing temperature appears around 42 K in the resistivity of Fe_{0.98}Cu_{0.02}Se, indicating a transition behavior from metallic to semiconducting with Cu doping. At Cu doping level x = 0.05 and 0.10, the resistivity increases quickly with cooling, showing an insulating behavior in the whole temperature range, which is in agreement with previous results of powder sample. The metal–insulator transition in $Fe_{1-x}Cu_xSe$ can be probably attributed to Anderson localization arising from disorder.^[26,27]

To further investigate the effects of Cu doping on the electrical transport properties, we measured the Hall effect of $Fe_{1-x}Cu_xSe (x = 0, 0.02, 0.05, 0.10)$ single crystals. Figure 3 shows the Hall resistivity ρ_{xy} at various temperatures with different Cu doping level. As seen in Fig. 3(a), ρ_{xy} of stoichiometric FeSe shows a linear field dependence for T > 50 K, in accordance with the compensated semimetal character, and the slope changes sign twice from positive to negative and then back to positive upon cooling.^[28] A non-linearity develops for ρ_{xy} and the initial slope eventually becomes negative for $T \leq 50$ K, but tends to change sign again under higher magnetic field. Unlike pure FeSe, the common feature of ρ_{xy} curves for Fe_{1-x}Cu_xSe with x = 0.02, 0.05, 0.1 is that no non-linearity develops in the whole temperature and magnetic field range. For $Fe_{0.98}Cu_{0.02}Se$ as shown in Fig. 3(b), the slope changes sign twice from positive to negative and then back to positive and remains positive upon cooling to 10 K. For Fe_{0.95}Cu_{0.05}Se as displayed in Fig. 3(c), the slope changes sign once from positive to negative at T = 140 K. For Fe_{0.90}Cu_{0.10}Se, the slope always remains positive in the whole temperature range without any sign change as presented in Fig. 3(d).

Fig. 2. (a) Temperature dependence of the normalized resistivity $\rho(T)/\rho(300 \text{ K})$ in Fe_{1-x}Cu_xSe. Inset shows the temperature dependence of the first derivative of resistivity for FeSe. (b) Specific heat measurement displayed by the C_p/T versus *T* plots for Fe_{1-x}Cu_xSe.

Fig. 3. Magnetic field (*H*) dependence of Hall resistivity (ρ_{xy}) of Fe_{1-x}Cu_xSe with x = 0 (a), 0.02 (b), 0.05 (c), and 0.1 (d) in the temperature range from 30 K to room temperature.

Fig. 4. (a) Temperature dependence of Hall coefficient $(R_{\rm H})$ of Fe_{1-x}Cu_xSe with x = 0, 0.02, 0.05, and 0.1 estimated by $R_{\rm H} \equiv d\rho_{xy}/dH$, at the zero-field limit. (b) The suppression of the sign change temperature T_R of $R_{\rm H}$ with Cu doping level *x*. The solid and dotted curves are guides to the eyes.

We plot in Fig. 4(a) the temperature dependence of the Hall coefficient, defined as the field derivative of ρ_{xy} , $R_{\rm H} \equiv$ $d\rho_{xy}/dH$, at the zero-field limit. The sign of the Hall coefficient $R_{\rm H}$ is an indicator of the dominant carrier type. The temperature dependence of $R_{\rm H}$ is shown in Fig. 4(a). With cooling, the Hall coefficient of FeSe changes sign at three temperatures T_{R1} , T_{R2} , and T_{R3} , from positive to negative at $T_{R1} = 205$ K, then from negative to positive at $T_{R2} = 120$ K with a moderate enhancement of $R_{\rm H}$ before $T_{\rm s}$, and finally reversed again at $T_{R3} = 59$ K, exhibiting a tendency to strongly negative values below $T_{\rm s}$. The evolution with Cu doping of the sign-change temperature T_R of the Hall coefficient is summarized in Fig. 4(b). All the three temperatures T_{R1} , T_{R2} , and T_{R3} are gradually reduced with Cu doping, with T_{R1} tending to vanish towards Cu doping x = 0.1, which indicates a hole dominant carrier type.

As we know, the valence state of the Fe atom in FeSe and other iron-based superconductors is assigned as Fe²⁺, so the Fe atoms are formally in the 3d⁶ electronic configuration. Also, electronic structure calculations for SrCu₂As₂ and BaCu₂As₂ predicted that the Cu atoms have a formal valence state of Cu¹⁺ and a nonmagnetic and chemically inert 3d¹⁰ electronic configuration.^[29] Anand *et al.* confirmed this result by measuring the electronic and magnetic properties of SrCu₂As₂ and BaCu₂As₂, suggesting that Cu substitution for Fe in (Ca,Sr,Ba)(Fe_{1-x}Cu_x)₂As₂ should result in hole doping.^[30] We infer that Cu substitution in FeSe plays a role of hole doping which leads to the suppression of sign change temperatures T_{R1} , T_{R2} , and T_{R3} of the Hall coefficient and hole dominant carrier type in Fe_{1-x}Cu_xSe.

4. Conclusion

We have successfully grown a series of $Fe_{1-x}Cu_xSe$ single crystals with x = 0, 0.02, 0.05, and 0.1. With increasing Cu doping content, the lattice parameter *a* increases monotonically, while the lattice parameter *c* decreases monotonically. Both the resistivity and specific heat measurements indicate that Cu doping suppresses nematicity and superconductivity and provokes a metal-insulator transition in $Fe_{1-x}Cu_xSe$. Also, Cu substitution changes an electron dominance at low temperature of un-doped FeSe to a hole dominance of Cu-

doped $Fe_{1-x}Cu_xSe$ at x = 0.02 and 0.1, and reduces the signchange temperature (T_R) of the Hall coefficient (R_H).

References

- [1] Shibauchi T, Hanaguri T and Matsuda Y 2020 J. Phys. Soc. Jpn. 89 102002
- [2] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
- [3] Medvedev S, McQueen T M, Troyan A I, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
- [4] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 *Phys. Rev. B* 82 180520(R)
- [5] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 *Phys. Rev. B* 83 060512(R)
- [6] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K 2011 J. *Phys.: Condens. Matter* 23 052203
- [7] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y 2012 Sci. Rep. 2 426
- [8] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
- [9] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 *Phys. Rev. B* 92 064515
- [10] He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605
- [11] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 *Nat. Commun.* 7 12146
- [12] Matsuura K, Mizukami Y, Arai Y, et al. 2017 Nat. Commun. 8 1143
- [13] Terao K, Kashiwagi T, Shizu T, Klemm R A and Kadowaki K 2019 Phys. Rev. B 100 224516
- [14] Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J and Cheng J G 2017 *Phys. Rev. Lett.* **118** 147004
- [15] Licciardello S, Buhot J, Lu J, Ayres J, Kasahara S, Matsuda Y, Shibauchi T and Hussey N E 2019 *Nature* 567 213
- [16] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 *Nat. Phys.* 11 543
- [17] Urata T, Tanabe Y, Huynh K K, Yamakawa Y, Kontani H and Tanigaki K 2016 Phys. Rev. B 93 014507
- [18] Wu M K, Hsu F C, Yeh K W, et al. 2009 Physica C 469 340
- [19] Yadav A K, Thakur A D and Tomy C V 2011 Solid State Commun. 151 557
- [20] Yadav A K, Sanchela A V, Thakur A D and Tomy C V 2015 Solid State Commun. 202 8
- [21] Williams A J, McQueen T M, Ksenofontov V, Felser C and Cava R J 2009 J. Phys.: Condens. Matter 21 305701
- [22] Huang T W, Chen T K, Yeh K W, Ke C T, Chen C L, Huang Y L, Hsu F C, Wu M K, Wu P M, Avdeev M and Studer A J 2010 *Phys. Rev. B* 82 104502
- [23] Schoop L M, Medvedev S A, Ksenofontov V, Williams A, Palasyuk T, Troyan I A, Schmitt J, Casper F, Wang C H, Eremets M, Cava R J and Felser C 2011 *Phys. Rev. B* 84 174505
- [24] Shylin S I, Ksenofontov V, Naumov P G, Medvedev S A and Felser C 2018 J. Supercond. Nov. Magn. 31 763
- [25] Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O and Vasiliev A 2013 CrystEngComm 15 1989
- [26] Chadov S, Schärf D, Fecher G H and Felser C 2010 Phys. Rev. B 81 104523
- [27] Young B L, Wu J, Huang T W, Yeh K W and Wu M K 2010 Phys. Rev. B 81 144513
- [28] Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Béard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Löhneysen H, Matsuda Y, Coldea A I and Shibauchi T 2015 *Phys. Rev. Lett.* **115** 027006
- [29] Singh D J 2009 Phys. Rev. B 79 153102
- [30] Anand V K, Perera P K, Pandey A, Goetsch R J, Kreyssig A and Johnston D C 2012 Phys. Rev. B 85 214523