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We report the effects of MgSiO3 addition on the crystal growth and characteristics of type-Ib diamonds synthesized
in Fe–Ni–C system. The experiments were carried out with pressure at 5.5 GPa, temperature at 1385 ∘C–1405 ∘C, and
duration of 23.1 h. As MgSiO3 increases from 0.0 wt% to 3.0 wt%, the diamond growth temperature increases from
1385 ∘C to 1405 ∘C, the addition of MgSiO3 and the movement of P–T diagram toward the higher temperature direction
result in a series of effects to the Fe–Ni–C system and crystal growth. Firstly, it increases the content of metastable
recrystallized graphite and accelerates the competition with the carbon source needed for diamond growth, thus causing
the decreased crystal growth rate. Diamond crystals exhibit the combination form of {111}, {100}, {113}, and {110}
sectors, the decreased {100} and {113} sectors, dominated {111} sector are all attributed to the higher growth rate in [100]
direction caused by the synergy of MgSiO3 and the movement of P–T diagram. The higher growth rate in [100] direction
also increases the metal catalyst and graphite inclusions and leads to the increase of residual tensile stress on the crystal
surface. Accompanying with the high growth rate, a higher dissolution rate along [100] and [113] directions than [111]
direction occurs at the microstructure and forms the significantly developed (111) stepped growth layer. In addition to the
movement of P–T diagram, the addition of MgSiO3 poisons the catalyst and increases the nitrogen content of diamond
from 120 ppm to 227 ppm.

Keywords: diamond, MgSiO3, nitrogen content, recrystallized graphite

PACS: 81.10.Aj, 81.05.ug, 91.60.–x, 07.35.+k DOI: 10.1088/1674-1056/abb800

1. Introduction

Diamond holds an important role in jewelry because
of its excellent hardness, refractive index, profound his-
torical and cultural connotations.[1,2] In recent years, with
the progress of synthetic technology, synthetic diamond has
been rapidly applied in the jewelry industry.[3–6] At present,
gem quality diamond crystals are produced by high pres-
sure and high temperature (HPHT) and chemical vapor de-
position (CVD) methods, of which HPHT method accounts
for the main production capacity.[7,8] Metal catalysts such as
Fe, Ni, Mn, Co, Ti have been widely used in the synthe-
sis of HPHT diamond,[9–12] natural diamond crystals are be-
lieved to mainly originate from silicate or carbonate in the
upper mantle, which may partly be affected by some flu-
ids or melts.[13–16] Therefore, based on the traditional HPHT
method for synthesizing diamond, researchers began to inves-
tigate the nucleation mechanism and characteristics of syn-
thetic diamond in the mantle-like environment.[17–21] Sokol
& Pal’yanov (2008) synthesized {111} octahedral diamond

crystals in SiO2–H2O–C and Mg2SiO4–H2O–C systems at
7.5 GPa and 1600 ∘C conditions.[18] At conditions of 7 GPa
and 1700 ∘C–1900 ∘C, Palyanov et al. (2017) synthesized
{111} octahedron and {100} cubic crystals in Mg–C and
Mg0.8Si0.2–C systems, respectively, the addition of Si pro-
motes the development of the {111} sector.[22] Ding et al.
(2020) synthesized {111} crystals with a large number of de-
fects in Fe–Ni–C–Mg2Si3O8·5H2O system under 5.8 GPa–
6.3 GPa and 1300 ∘C–1420 ∘C conditions.[23] However, di-
amond samples obtained in those carbonate–silicate–C sys-
tems are all micron-sized, this is quite different from the
size of natural gem quality diamond crystals, it also causes
great difficulties for nitrogen analysis commonly used in gem
grade diamonds.[18,24–26] Although the temperature gradient
method (TGM) can be used to synthesize gem quality diamond
crystals, the Fe–Ni–C system is significantly different from
the silicate–carbonate system where natural diamond crystals
form. It is worth noting that the native Fe and Ni inclusions
have been found in the parent rock and inclusions of natural di-
amond crystals.[27–29] Therefore, the Fe–Ni–C–silicate system
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may also have implication for the formation of natural gem
quality diamond crystals. MgSiO3 coexists with diamond in
the form of enstatite in the upper mantle,[30] and its effect on
the crystallization of diamond has not been reported. The pur-
pose of this paper is to investigate the influence of MgSiO3 on
the crystal morphology, internal characteristics and nitrogen
content of synthetic gem grade diamond, and to provide ex-
perimental evidence for exploring the formation mechanism
of natural diamond in the upper mantle.

2. Material and methods
Diamond crystals were synthesized by the temperature

gradient method using a China-type large volume cubic high-
pressure apparatus (CHPA) (SPD-6×1200). The experiments
were carried out with pressure at 5.5 GPa, temperature at
1385 ∘C–1405 ∘C, and duration of 23.1 h. The assembly
diagram of the high-pressure anvil and synthetic cavities are
shown in Fig. 1. The 99.99% graphite was used as carbon
source, the Fe64Ni36 alloy was used as the catalyst, and Florisil
(MgSiO3) with 99% purity was selected as dopant. The carbon
source and MgSiO3 were mixed in different proportions using
an analytical balance with precision of 10−5 g, and then mixed
with 12 h on the mixer to ensure complete mixing. In this pa-
per, the {111} crystal of 1 mm in diameter and with triangular
shape is selected as the crystal seed. It is placed on the top of
MgO insulating medium, and its top surface is flush with the
top of MgO insulating medium. The pressure inside the press
chamber is calibrated by the phase transformation of Bi, Ba,
and Tl under high pressure. The control accuracy of pressure
is ±0.01 GPa. The temperature of the chamber is calibrated by
using the input power of the Pt-30% Rh/Pt-6% thermocouple.
The synthesis temperature in the chamber is controlled by the
heating system of CHPA. The control accuracy of the heating
power of CHPA in the process of diamond synthesis is ±1 W,
and the corresponding temperature control accuracy is ±1 ∘C.

After the synthesis process was finished, the catalyst with
diamond crystals was placed in the mixed heat solution of
H2SO4 and HNO3 (volume ratio 3:1) to remove the metal cat-
alyst and graphite on the crystal surface. The crystals were
placed in alcohol and washed with ultrasonic for 15 min to re-
move the oil contamination on the surface of the crystal. First,
the crystal shape, surface characteristics and internal charac-
teristics of the samples were observed by a Leica M205 C op-
tical microscope. The weight of the crystals was measured by
an analytical balance with a precision of 10−5 g. The crystals
in our work exhibits mainly {111} sector, therefore, the (111)
crystal face was selected for infrared absorption measurements
by using a VERTEX 70-V vacuum micro Fourier transform in-
frared spectrometer. Each sample was measured with a spec-
tral range of 600 cm−1 to 4000 cm−1 and a resolution of

2 cm−1 and the integral number was 64 times. The Raman
spectra were measured on the even (111) surface with a Ren-
ishaw in Via-type Raman spectrometer, the system equipped
with a telescope with 500× magnification, a 532-nm solid
stage laser and the laser power (100 mW at the sample sur-
face) was well below the threshold for thermally induced sam-
ple degradation. The spectra were recorded in the wavelength
region 600 cm−1–2000 cm−1 at interval of 1 cm−1 with the
spot size about 10 µm. An FEI Magellan 400-type scanning
electron microscope (SEM) equipped with an Oxford Max-
150-type energy dispersive spectrometer (EDS) was used to
investigate the distribution pattern of different elements on the
catalyst system. The system worked at 15-kV and 1.6-nA con-
ditions.
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Fig. 1. Schematic diagram of high-pressure anvil, synthetic block and sample
assembly. (a) Schematic diagram of high-pressure anvil and synthetic block.
(b) Sample assembly for diamond synthesized by HPHT method; 1: steel
cap; 2: graphite sheet; 3: dolomite; 4: MgO insulating medium; 5: metal
alloy catalyst; 6: graphite carbon source and MgSiO3; 7: crystal seed; 8:
NaCl+ZrO2; 9: graphite heater; 10: copper; 11: MgO insulating medium;
12: pyrophyllite.

3. Results and discussion
3.1. Synthesis conditions and internal characteristics

In the Fe–Ni–C system with 0.0-wt% to 3.0-wt% MgSiO3

doped, the photos of catalyst system before acid treatment and
diamond crystals are shown in Figs. 2(a) and 2(b), respec-
tively. Their synthesis conditions are shown in Table 1, and
D-1–D-5 are all synthesized under the pressure at 5.5 GPa,
among them, D-1 is a medium temperature diamond crystal
synthesized at 1385 ∘C without MgSiO3 doping. D-2–D-5 are
medium temperature crystals grown by doping 1.0-wt%, 1.4-
wt%, 2.0-wt%, 3.0-wt% MgSiO3, respectively. It can be seen
that with the increase of MgSiO3 doping ratio, the growth tem-
perature of the corresponding crystal changes from 0.0-wt%,
1.0-wt%, 1.4-wt% MgSiO3 at 1385 ∘C to 2.0-wt% MgSiO3 at
1395 ∘C, and then to 3.0 wt% of MgSiO3 at 1405 ∘C. It indi-
cates that doping MgSiO3 makes the P–T diagram of diamond
growth move toward higher temperature direction.

With the increase of MgSiO3 in the Fe–Ni–C system, it is
found that the content of recrystallized flake graphite shown in
Fig. 2(a) increases gradually in the catalyst system. This may
be due to the incomplete absorption of the dissolved carbon
source in the catalyst system.[31] The content of Fe–Ni metal
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catalyst and graphite inclusions occurred in the diamond crys-
tal shown in Figs. 2(b)–2(g) also increase gradually, and the
inclusion content in the direction of [100] is much greater than
that in the direction of [111]. For D-1, D-2, D-3 crystals doped
with low-concentration MgSiO3, the inclusions in Figs. 2(b)
and 2(c) are distributed in single lines and dots along the [100]
direction. As the concentration of doped MgSiO3 increased to
2.0 wt%, the inclusions in Figs. 2(b), 2(d), and 2(e) exhibit a
larger dot shape along the [100] direction and a linear distri-
bution along the [111] direction. When the MgSiO3 content is
further increased to 3.0 wt%, the metal and graphite inclusions
in Figs. 2(b), 2(f), and 2(g) further increase and show bead
or tower distribution in the [100] direction and parallel dots
and lines distribution in the [111] direction, respectively. The
distribution of inclusions in diamond is related to the relative
growth rate in the [111] and [100] directions. When the [100]
direction grows too fast, the inclusions in the [100] direction
will increase.[7] We speculate that the increase of inclusions
in the [100] direction in the diamond crystals is related to the

excessive growth in the [100] direction caused by the synergy
of MgSiO3 and the P–T diagram movement to the higher tem-
perature direction.

The distribution pattern of different elements and cor-
responding phases was investigated by SEM-EDS mapping
technology on the catalyst system of D-1 and D-5. The re-
sults are shown in Fig. 3. The synthesized diamond crystal is
located at the centre of catalyst system shown in Figs. 3(a) and
3(g). For crystal D-1, Fe, Ni metal catalyst and recrystallized
graphite are uniformly distributed in the outer layer next to the
diamond shown in Figs. 3(e) and 3(f). For crystal D-5 with
3.0-wt% MgSiO3 in Fe–Ni–C system, the outer layer next to
the diamond is Fe, Ni metal catalyst shown in Figs. 3(k) and
3(l), while MgSiO3, recrystallized graphite and Fe, Ni metal
catalyst exist in the outer layer together (Fig. 3). The distribu-
tion pattern of diamond, recrystallized graphite, metal catalyst,
and MgSiO3 are in accordance with the observation as shown
in Fig. 2(a).

D-1                                  D-2                                 D-3    

1 mm

(a)

(b)
D-1                                    D-2                                D-3 D-4                                    D-5

Dia Gr

catalyst

250 μm 250 μm 250 μm 100 μm 100 μm

D-1

D-4                                    D-5 

[100] [100] [111]

[100] [111]

(g) (f) (e) (d) (c) D-4 D-4 D-4D-4

Fig. 2. The catalyst system and crystal characteristics of synthetic diamond doped with different contents MgSiO3 in the Fe–Ni–C system. (a)
The photos of catalyst system with 0.0-wt%, 1.0-wt%, 1.4-wt%, 2.0-wt%, 3.0-wt% MgSiO3 doped before acid treatment. (b) Crystal photos
of diamond synthesized by doping 0.0-wt% to 3.0-wt% MgSiO3 in Fe–Ni–C system. The metal catalyst and graphite inclusions inside the
crystal are shown by the red dotted line. (c)–(g) The inclusions distribution characteristics of D-1, D-4, and D-5 crystals. Dia: diamond. Gr:
recrystallized graphite.

Table 1. Experiment conditions and diamond characteristics synthesized by doping 0.0-wt%–3.0-wt% MgSiO3 in the Fe–Ni–C system.

Run MgSiO3/wt% Temperature/∘C Weight/mg Crystal morphology Remarks

D-1 0.0 1385 31.7 {111}> {100}> {113}> {110} l
D-2 1.0 1385 29.5 {111}> {100}> {113}> {110} l
D-3 1.4 1385 28.5 {111}> {100}> {113}> {110} l
D-4 2.0 1395 23.9 {111}> {100}> {113}> {110} m
D-5 3.0 1405 16.7 {111}>> {110}> {100} h

Here, l, m, h respectively represents the low, medium, and high contents of recrystallized graphite in the system.
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Dia

Gr

MgSiO3MgSiO3

MgSiO3

250 μm 250 μm 250 μm

250 μm 250 μm 250 μm

(g)                                                    C Kα1 (h)                                                    O Kα1 (i)                                                  Mg Kα1

(j)                                                    Si Kα1 (k)                                                    Fe Kα1 (l)                                                   Ni Kα1

250 μm
D-1                                                                  D-1                                                                D-1

D-1                                                                  D-1                                                                D-1

D-5                                                                  D-5                                                                D-5

D-5                                                                  D-5                                                                D-5

250 μm 250 μm

250 μm 250 μm 250 μm

(a)                                                    C Kα1 (b)                                                    O Kα1 (c)                                                  Mg Kα1

(d)                                                    Si Kα1 (e)                                                    Fe Kα1 (f)                                                   Ni Kα1

Dia

Gr

Fig. 3. The element distribution diagram of catalyst system obtained by SEM-EDS mapping technology on D-1 and D-5. (a)–(f) The distribution of C,
O, Mg, Si, Fe, and Ni elements on D-1. (g)–(l) The distribution of C, O, Mg, Si, Fe, and Ni elements on D-5. Dia: diamond. Gr: recrystallized graphite.

3.2. Crystal morphology

In the Fe–Ni–C-MgSiO3 system, the morphology of diamond crystals synthesized with {111} crystal as seed is shown in
Table 1 and Fig. 4. Crystals D-1–D-4 with 0.0-wt% to 2.0-wt% MgSiO3 doped are all the combination form of {111}, {100},

500 μm 500 μm 500 μm

500 μm 200 μm

(100)

(113)

(111)
(110)

(100)

(113)

(111)

(110)

(100)

(113)

(111)(110)

(100)

(113)

(111)

(110)

(100)

(111)

(110)

(a) 

(d)                                                                  

(b) (c)

(e) 

Fig. 4. The crystal characteristics of diamond synthesized by doping MgSiO3 in the Fe–Ni–C system. (a)–(e) Crystal D-1 to D-5 synthesized
by doping 0.0-wt%, 1.0-wt%, 1.4-wt%, 2.0-wt%, and 3.0-wt% MgSiO3, respectively.
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100 μm 100 μm 200 μm

100 μm 100 μm

(a)                                                                  (b)                                                      (c)

(d)                                                                   (e)                         

Fig. 5. The characteristics on the (111) crystal face at the bottom of the diamond crystals. (a)–(e) Crystal D-1–D-5 synthesized by doping 0.0-wt%,
1.0-wt%, 1.4-wt%, 2.0-wt%, and 3.0-wt% MgSiO3, respectively. The arrows indicate the extension direction of the stepped growth layer from the
centre of crystal to the edge.

{113}, {110} sectors and shows {111} > {100} > {113} >

{110} regular pattern in Figs. 4(a)–4(d). Crystal D-5 with 3.0-
wt% MgSiO3 doped shows the combination form of {111},
{110}, {100} sectors, and the development of {111} sector in
Fig. 4(e) is much better than {110} and {100} sectors. The
(113) face of D-5 crystal has disappeared, and its (100) face is
significantly smaller than that of D-1–D-4. It is concluded that
with the increase of MgSiO3 doping ratio, {100} and {113}
sectors tend to decrease gradually, while {111} sector will
gradually dominate the growth of diamond. This may also be
ascribed to the higher growth rate in the [100] direction than
in the [111] direction caused by the synergy of MgSiO3 and
the movement of P–T diagram toward higher temperature di-
rection.

On the (111) crystal face at the bottom of the crystal, with
the increase of MgSiO3 from 0.0 wt% to 3.0 wt%, the step
growth layer in Figs. 5(a)–5(e) changed gradually from not
obvious to significantly visible. This evolution is interpreted
by a higher dissolution rate in [100] and [113] directions than
[111] direction of the micro-structure, so that the crystal face
of the {111} sector can be retained.[32]

3.3. Crystal growth rate

Figure 6 shows the growth rate of diamond synthesized
with different content of MgSiO3 in the Fe–Ni–C system. The
growth rate of D-1 with no MgSiO3 addition is 1.4 mg/h.
When the MgSiO3 content increases to 1.0 wt% and 1.4 wt%,
the corresponding crystal growth rate decreases to 1.3 mg/h
and 1.2 mg/h, respectively. Furthermore, the growth rates
of D-4 and D-5 with 2.0-wt% and 3.0-wt% MgSiO3 doped
are significantly reduced to 1.0 mg/h and 0.7 mg/h, respec-
tively. The growth rate of diamond crystal decreases with the
increase of the doped MgSiO3 proportion. It is speculated

that the synergy of MgSiO3 and the increase of temperature
could make the content of recrystallized graphite in the Fe–
Ni–C system rise sharply and cause competition with carbon
source needed for diamond growth, which results the decrease
of crystal growth rate.[31,33]
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Fig. 6. Growth rate of diamond synthesized with 0.0-wt%–3.0-wt% MgSiO3
doped in Fe–Ni–C system.

3.4. Infrared spectra

The infrared spectra of diamond crystals doped with 0.0-
wt% to 3.0-wt% MgSiO3 in the Fe–Ni–C system all con-
tain 1130-cm−1 and 1344-cm−1 absorption peaks as shown in
Fig. 7(a), which corresponds to single substitutional nitrogen
(C form).[34–36] The following formula (1) was used to cal-
culate the nitrogen content of C form (Nc). The error of Nc

obtained in this way is less than 5%.[9,37,38]

Nc(ppm) = µ(1130 cm−1)/µ(2120 cm−1)×5.5×25,

µ(1130 cm−1) = [A(1290 cm−1)−A(1370 cm−1)]/0.31,

µ(2120 cm−1) = [40×A(2030 cm−1)

+87×A(2160 cm−1)]/127−A(2120 cm−1). (1)

As shown in Fig. 7(b), the Nc of crystal D-1 with no
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MgSiO3 addition is 120 ppm, when MgSiO3 is increased to
1.0 wt% and 1.4 wt%, the Nc of crystal D-2 and D-3 increase to
189 ppm and 190 ppm, respectively. Higher Nc about 216 ppm
and 227 ppm occurs in the crystal D-4 and D-5 when MgSiO3

is further increased to 2.0 wt% and 3.0 wt%, respectively. The
addition of MgSiO3 in the Fe–Ni–C system increases the ni-
trogen content in diamond crystal, it is explained by the en-
hancement that the poison of MgSiO3 to Fe–Ni metal catalyst
caused by the increase of MgSiO3 content.[9] As a result, the
solubility content of nitrogen in Fe–Ni metal decreases and
increases the Nc in diamond. The high nitrogen content of nat-
ural diamond in the upper mantle may have a similar mecha-
nism, the solubility of nitrogen in silicate is much lower than
that in Fe–Ni–MgSiO3 system under the condition of upper
mantle temperature and pressure, which may makes the con-
tent of free nitrogen in the system increase to a higher level at
average 235 ppm.[39]
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Fig. 7. Infrared spectra (a) and nitrogen content (b) of diamond synthesized
with 0.0-wt%–3.0-wt% MgSiO3 doped in the Fe–Ni–C system.

3.5. Raman spectra

Raman spectra of diamond doped with 0.0-wt%–3.0-wt%
MgSiO3 in the Fe–Ni–C system show a single strong and nar-
row diamond sp3 vibration peak near the 1331 cm−1 in Fig. 8.
It is noticed that the peak position of diamond in the Raman
spectra gradually shifted from 1132.1 cm−1 to 1131.3 cm−1

with the increase of MgSiO3 content. The following for-
mula (2) was used to calculate the surface residual stress of di-
amond crystals synthesized with different MgSiO3 doped:[40]

σh(GPa) = [γ0 − γ(cm−1)]/2.88. (2)

According to formula (2), the calculated positive stress

corresponds to the residual tensile stress on the crystal sur-
face. With the increase of MgSiO3 content from 0.0 wt% to
3.0 wt% in the Fe–Ni–C system, the residual tensile stress on
the crystal surface also rises from 0.0 GPa to 0.2 GPa (Table 2).
The residual stress on the surface of synthetic diamond crystal
is significantly affected by the content of metal inclusions in
the crystal and increases with the amount of inclusions.[41] In
Figs. 2(b)–2(g), we also observed that the content of metal in-
clusions in the crystals increased with the increase of MgSiO3

doping content. The increase of residual tensile stress and the
shift down of Raman peak position is related to the increase of
inclusions inside the crystal.
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Fig. 8. Raman spectra of diamond crystals synthesized with 0.0-wt%–3.0-
wt% MgSiO3 doped in the Fe–Ni–C system.

Table 2. Raman shifts and stresses of diamond crystals synthesized
with 0.0-wt%–3.0-wt% MgSiO3 doped in the Fe–Ni–C system.

Run MgSiO3 Raman shift/cm−1 ∆γ/cm−1 Stress/GPa

D-1 0.0 1332.1 -0.1 0.0
D-2 1.0 1331.8 0.2 0.1
D-3 1.4 1331.3 0.7 0.2
D-4 2.0 1331.3 0.7 0.2
D-5 3.0 1331.3 0.7 0.2

3.6. Influence of MgSiO333 on type-Ib diamond synthesized
in Fe–Ni–C system

Figure 9 summarizes the influence pattern of MgSiO3 on
type-Ib diamond synthesized in the Fe–Ni–C system. Firstly,
it can be seen from the synthesis conditions shown in Ta-
ble 1, under the same pressure condition, with the content
of MgSiO3 in the Fe–Ni–C system increases from 0.0 wt%
to 3.0 wt%, the P–T diagram of diamond growth moves to-
wards the direction of higher temperature, and this will affect
many properties of the synthesized crystals. First, the increase
of synthesis temperature from 1385 ∘C to 1405 ∘C will make
the growth rate of diamond crystals in the [100] direction sig-
nificantly faster than that in the [111] direction,.[7] This will
eventually make the development of {111} sector in the crys-
tal gradually dominant, while the development of {100} and
{113} sectors slow down or even disappear.
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Fig. 9. Influence pattern of doped MgSiO3 on diamond synthesized in the Fe–Ni–C system, the dark green frames are observed crystal
characteristics.

In the interior of the crystal, because of the higher growth
rate in the [100] direction than the growth rate in the [111] di-
rection, it is easier for the metal catalyst and graphite in the
synthetic system to enter the diamond crystal as inclusions
and mainly distribute along the fast growing [100] direction.
As the content of doped MgSiO3 increases from 0.0 wt% to
3.0 wt% in the Fe–Ni–C system, the inclusions inside the di-
amond crystal gradually increase and evolve from the single
dot or linear pattern to the parallel linear or beaded distri-
bution pattern. Furthermore, the increased melt/catalyst and
graphite inclusions increase the residual tensile stress on the
synthetic diamond surface and shift the Raman peak position
from 1132.1 cm−1 to 1131.3 cm−1.[41] On the other hand, ac-
companying with the high growth rate, there is also a higher
dissolution rate in the [100] direction than [111] direction.[32]

The higher dissolution rate in the [100] direction may account
for the micro-step growth layer structure on the bottom surface
of (111).

The driving force of diamond synthesis by TGM method
is the solubility difference between graphite and diamond in
the metal solvent system. As the synthesis temperature in-
creases, this driving force will gradually decrease to a certain
extent that is too small to overcome the nucleate barrier for di-
amond. In this case, the carbon source dissolved in the Fe–Ni
catalyst system exists in the form of metastable graphite and
causes competition with carbon sources needed for diamond
growth.[31] As a result, the growth rate of diamond crystals is
significantly reduced from 1.4 mg/h to 0.7 mg/h.

The addition of MgSiO3 in the Fe–Ni–C system has a
toxic effect on the metal catalyst.[9] With the increase of
MgSiO3, the active Fe–Ni metal catalyst in the system is rela-

tively lower (Fig. 3), and the amount of nitrogen dissolved in
the system decreases,[42] as a result, the Nc of the synthesized
crystal is increased. Polyanov et al. (2014) observed that the
Nc of diamond grown under equilibrium condition in carbon-
ate melt is higher than that of diamond grown in metal melt,[43]

this phenomenon could be a similar mechanism to our work.
The increased Nc in synthetic crystals may be caused by the
poisoning of MgSiO3 on catalyst.

The crystals D-1, D-2, and D-3 with 0.0-wt%, 1.0-wt%,
1.4-wt% MgSiO3 doped were all synthesized at 1385 ∘C. D-
4 and D-5 were synthesized at 1395 ∘C and 1405 ∘C, re-
spectively. So, the effect of temperature can be discussed by
comparing the evolution of D-1–D-3 and D-1–D-5, respec-
tively. With the content of MgSiO3 increasing from 0.0 wt% to
1.4 wt%, the growth rate decreased, the development of {111}
sector gradually dominated, and the development of {100} and
{113} sectors decreased. The nitrogen content also gradually
increased, and the Raman shifts moved to the low wavenum-
ber direction. The growth rate, crystal morphology, nitrogen
content and Raman shift of D-1–D-3 were the same as those
of D-1–D-5. Therefore, the influence of temperature can be
excluded when separately discuss the effects of MgSiO3 to
the Fe–Ni–C system. the effects of MgSiO3 to the Fe–Ni–C
system are similar to that of temperature and significantly in-
crease the growth rate and the accompanied dissolution rate at
[100] direction than [111] direction. The addition of MgSiO3

to the Fe–Ni–C system also increases the metastable graphite
content and finally decreases the crystal growth rate. Thus,
the observed crystal morphology and internal characteristics
are the synergy of MgSiO3 and the movement of the P–T dia-
gram.
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4. Conclusion and perspectives
In this paper, the effects of MgSiO3 addition on the crys-

tal morphology, internal and external structure, growth rate,
and nitrogen content of type-Ib gem grade diamond under the
condition of typical upper mantle temperature and pressure are
discussed. The possible factors affecting the crystal structure
and nitrogen content of the natural diamond produced by the
upper mantle are also discussed.

With the increase of MgSiO3 from 0.0 wt% to 3.0 wt%
and the P–T diagram of diamond growth in the Fe–Ni–C sys-
tem moves towards the direction of higher temperature, and its
suitable growth temperature gradually increases from 1385 ∘C
to 1405 ∘C, the synergy of MgSiO3 and the movement of the
P–T diagram results in the increase of recrystallized graphite
content and the competition with the carbon source needed for
the growth of diamond. Therefore, the crystal growth rate de-
creases from 1.4 mg/h to 0.7 mg/h.

Diamond crystals exhibit the combination form of {111},
{100}, {113}, {110} sectors, the increase of MgSiO3 and the
movement of the P–T diagram bring about a higher growth
rate in [100] and [113] directions than [111] direction, as a
result, {111} sector gradually dominate the morphology of di-
amond crystal. Besides, the higher growth rate in [100] di-
rection forms the increased metal catalyst and graphite inclu-
sions, thus leading to the increase of residual tensile stress on
the crystal surface from 0.0 GPa to 0.2 GPa. Accompanying
with the high growth rate, a higher dissolution rate occurs in
the [100] direction than [111] direction and may account for
the stepped growth layer on (111) face.

The addition of MgSiO3 will poison the Fe–Ni catalyst
in the system, resulting in a reduction of nitrogen dissolved in
the system and the increase of the nitrogen content in the crys-
tal. This also confirms the influence of the difference of redox
environment between the upper mantle and the lower mantle
on the average nitrogen content in the natural diamond.
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