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The effect of final-state dynamic correlation is investigated for ionization of atomic hydrogen by 75-keV proton
impact by analyzing double differential cross sections. The final state is represented by a continuum correlated wave
(CCW-PT) function which accounts for the interaction between the projectile and the target nucleus (PT interaction). The
correlated final state is nonseparable solutions of the wave equation combining the dynamics of the electron motion relative
to the target and projectile, satisfying the Redmond’s asymptotic conditions corresponding to long range interactions. The
transition matrix is evaluated using the CCW-PT function and the undistorted initial state. Both the correlation effects and
the PT interaction are analyzed by the present calculations. The convergence of the continuous correlated final state is
examined carefully. Our results are compared with the absolute experimental data measured by Laforge et al. [Phys. Rev.
Lett. 103, 053201 (2009)] and Schulz et al. [Phys. Rev. A 81, 052705 (2010)], as well as other theoretical models (especially
the results of the latest non perturbation theory). We have shown that the dynamic correlation plays an important role in
the ionization of atomic hydrogen by proton impact. While overall agreement between theory and the experimental data
is encouraging, detailed agreement is still lacking. However, such an analysis is meaningful because it provides valuable
information about the dynamical correlation and PT interaction in the CCW-PT theoretical model.

Keywords: ionization, three-body Coulomb problem, correlated wave functions, double differential cross sec-
tion
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1. Introduction

The description of three-particle Coulomb systems above
their total breakup threshold constitutes a major challenge
for theoretical models. Due to the long-range nature of the
Coulomb forces, the motion of the three particles remains a
correlated one even out to infinite inter-particle separations. In
fact, for more than two mutually-interacting particles, it is well
established that Schrödinger’s equation is unsolvable in closed
form even if the underlying force is completely understood.
The theoretical models worked out for the three-body breakup
apply various approximations. In the absence of an exact so-
lution to the problem, the only way to check the accuracy and
the range of the validity of the models is the comparison of
their predictions with experimental data.

For ion–atom collisions, the simplest collision process is
the ionization of the hydrogen by proton impact. These ion-
ization processes are essentially a pure three-body Coulombic
interacting system. This three-body system has two important
advantages. First, the target atom has no passive electron(s)
included in the interaction, so there is neither shielding of the
nuclear charge nor any interaction between electrons. Sec-

ond, the wave functions of the hydrogen atom are completely
accurate. In spite of the fundamental significance of the hy-
drogen atom as a target, due to the well-known difficulties of
the fully differential cross section (FDCS) measurements for
atomic hydrogen, the majority of the ionization experiments
were carried out for the hydrogen molecule,[1–3] helium,[4–7]

and other heavier atoms and molecules. Although proton-
hydrogen FDCS measurements are yet to be performed, exper-
imental data on the double differential cross section (DDCSp)
are available.[8,9] The experiments on the hydrogen target have
evoked a fresh interest in this problem.

On the theoretical side, a number of calculations have
been carried out for this particular process. A major ad-
vancement in the understanding of the ionization dynamics
seemed to have been accomplished at calculating the dou-
bly differential cross sections of electrons ejected by proton
impact at energies 75 keV. Schulz et al.[9] performed calcu-
lations using various models based on the perturbation the-
ory. They applied the three-Coulomb wave (3C), second Born
approximation–Coulomb wave (SBA-C), and continuum-
distorted-wave eikonal-initial-state (CDW-EIS) models. In
the CDW-EIS model, the projectile–target (PT) interaction
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was accounted for both classically (CDW-EIS-CL) and semi-
classically (CDW-EIS-SC). The SBA-C model was overall in
good agreement with the measured data. Nevertheless, ma-
jor differences between the various calculations were found.
However, classical-trajectory Monte Carlo (CTMC) calcula-
tions were used by Sarkadi[10] which showed that three-body
fragmentation dynamics cannot be understood purely classi-
cally. The most recent and sophisticated calculations have
been performed by some authors. The coupled-pseudostate
(CP) method[11] as well as more sophisticated wave packet
convergent close-coupling (WP-CCC) approach[12] have been
employed to calculate these cross sections. The results were
found to be in good , but not perfect, agreement with the ex-
perimental data.[8,9]

Nevertheless, most of the models were believed to pro-
vide an adequate description of the collision dynamics for
collision systems. The surprising observation of qualitative
discrepancies between experiment and theory showed that the
theory is still facing significant problems. The three-body dy-
namics in simple atomic systems can be considered as under-
stood only if satisfactory agreement with experimental data
is obtained consistently with a fully quantum-mechanical ap-
proach. Overall, the existing results show that three-body dy-
namics plays an important role in all scattering angles.[8] Ac-
cordingly, further theoretical analysis and calculations seem
appropriate and interesting.

Theoretically, one of the possible problems of the theo-
retical models used so far within the framework of the per-
turbation theories is the lack of correlation in the final-state
wave function.[13] The final state with correlation has been de-
scribed in detail by Gasaneo et al. (see Refs. [14,15] and ref-
erences therein), using a multivariable hypergeometric func-
tion as the approximate solution of the three-body Schrodinger
equation. In other words, the final-state wave function is non-
separable solutions of the wave equation combining the dy-
namics of the electron motion relative to the target and pro-
jectile, satisfying the Redmond’s asymptotic conditions corre-
sponding to long range interactions. Colavecchia et al.[16,17]

have expressed the correlated continuum wave as CCW. The
correlation of the ionized electron moving in the long-range
Coulomb potential of two heavy ions directly influences the
essence of the dynamical process in the ionization reactions.
The details of these states can be revealed by the computation
of differential cross sections of electronic emission in these
collisions (see Refs. [13,14,16,17] and references therein).

One of the simplest systems in which this correlation can
be studied is the three-body Coulomb problem. Single ioniza-
tion by ion impact can be modeled as a three-body Coulomb
problem and offers the opportunity to investigate the full con-
tinuum state that describes the final state of the collision. The
correlated continuum wave has been applied to the calculation

of the DDCSs as a function of the emitted electron energy, un-
der an impact parameter approximation, for H++H, H++He,
C6++He, and F9++He ionizing collisions by Colavecchia et
al.[16–18] and Ciappina et al.[19] It has been shown that in the
intermediate- to high-energy regime, the electron–ion correla-
tion plays an important role in the single ionization of atoms
by ion impact. However, Ciappina and Cravero[13] also calcu-
lated the FDCS of helium single ionization by 100 MeV/amu
bare carbon projectiles using the same approximate as for the
CCW function. And they found that the effect of the correla-
tion had a slight effect on the FDCS, which could not explain
these experiments. It should be noted that the PT interaction
in the final state was not considered in the above mentioned
calculations. In fact, it has been shown that the interaction
between the projectile and the target ion, at intermediate im-
pact energies,[8–10,20,21] has a large influence depending on the
ejected electron energies and momentum transfer values. It is
necessary to include the PT interaction at the level of multiple
differential cross sections.[22,23] Therefore, the role of the cor-
relation and PT interaction deserves to be studied and analyzed
in more detail (see Refs. [8,9,13] and references therein).

In a recent work,[24] we proposed and developed an ap-
proach to calculate the FDCS of helium by proton impact ion-
ization using the dynamically correlated function. The PT
interaction has been accounted for not only in the CCW fi-
nal state, but also in the perturbative potential. This model
has been marked as CCW-PT. We have shown that the dy-
namic correlation plays an important role in the single ioniza-
tion of helium by 75-keV proton impact. However, when the
ejected electron speed is close or equal to the outgoing projec-
tile speed, the results given by this model are unreliable (the
reason is explained in the next section). At this matching ve-
locity, the strong post-collision interaction (PCI), correlation,
and PT interactions are enhanced between the ejected elec-
tron and the outgoing projectile. Significant differences be-
tween theory and experiment were found.[3,25,26] This shows
that in the region of electron–projectile velocity-matching, the
differential cross section is very sensitive to the details of the
underlying few-body dynamics. The research of this kind of
situation has aroused the great interest of more and more ex-
perimental and theoretical workers.[3,8–11,25–28] It is of theoret-
ical interest that this collision system provides an accurate test
of the theoretical description of the dynamics of the few-body
dynamics.

The purpose of this work is to promote and use our CCW-
PT model to investigate the role of the correlated effects and
PT interaction on the double differential cross section of hy-
drogen atom ionized by proton impact, and to analyze whether
the theoretical improvements represented by the CCW func-
tion can explain the large differences between the theory
and experiment discovered so far. Therefore, we are moti-
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vated to compare our CCW-PT results with the corresponding
measurements[8,9] and other theoretical data, and evaluate the
ability of the present model to reproduce the DDCSp structure
and relative magnitudes of the experiments.

The paper is set out as follows. In Section 2, the theoret-
ical formalism and evaluation of the transition amplitude are
outlined. The obtained results and their related comparisons
and discussion are given in Section 3. Concluding remarks
are given in Section 4. Atomic units (a.u.) are used unless
otherwise stated.

2. Theoretical treatments

We deal explicitly with ionization of atomic hydrogen in
the ground state by protons. The main focus of the present
work is the DDCSp, differential in the energy of the ejected
electron and the angle of the scattered projectile, measured
in the experiment.[8,9] The present calculation is based on our
previous techniques (see Ref. [24]), so the details of the theory
are omitted here, only the basic steps and different theoretical
considerations related to DDCSp are summarized.

Let 𝐾i and 𝐾 f be the initial and final wave vectors for
the relative motion of the proton in the center-of-mass (c.m.)
frame, and 𝑘T be the same for the ejected electron. The corre-
sponding DDCSp is given by

d2σ

dEe dΩP
= (2π)4

µ
2
PA

kTK f

Ki

∫
|Tf i|2 dΩ e , (1)

where dΩP and dΩ e are the differential solid angles around
the wave vectors 𝐾 f and 𝑘T, dEe is the energy interval of the
emitted electron, and µPA is the reduced mass of the proton–
hydrogen system.

The main quantity in Eq. (1) is the transition matrix Tf i in
prior form, which can be written as

Tf i = 〈Ψ−f |Vi|Φ+
i 〉. (2)

The undistorted initial state

Φ
+
i (𝑟T,𝑅T) = (2π)−3/2 exp(𝐾i ·𝑅T)(1/π)1/2 exp(−rT)

is the product of a plane wave with momentum 𝐾i for the in-
cident proton and the initial target state for the hydrogen atom.
Vi = 1/RT−1/rP is the initial-channel perturbation. Here, 𝑟T,
𝑟P, and 𝑅T are the coordinates of the electron with respect to
the target core (T), the projectile (P), and the projectile relative
to the atomic center of mass, respectively.

The final state Ψ
−
f is represented by the following contin-

uum correlated wave function which accounts for the interac-
tion between the projectile and the target nucleus (PT interac-
tion) (see Refs. [14,15] for details):

ψ
−
f = N exp(i𝑘T ·𝑟T + i𝐾 f ·𝑅T)1F1(iαPT,1,−ikPTξPT)

×
∞

∑
m=0

am(−ikTξT)
m

1F1(iαT +m,1+2m,−ikTξT)

×(−ikPξP)
m

1F1(iαP +m,1+2m,−ikPξP), (3)

with

N = (2π)−3
Γ(1− iαPT)Γ(1− iαT− iαP)

×exp(−π[αPT +αT +αP]/2), (4)

am =
(iαT)m(iαP)m

(m)m(1)2mm!
. (5)

Here 1F1 and (α)m are the confluent hypergeometric func-
tion and the Pochammer symbol, respectively. And k jξ j =

k jr j +𝑘 j ·𝑟 j with j = P, T, or PT. These P, T, and PT represent
the projectile–electron, target–electron, and projectile–target
interactions, respectively. The Sommerfeld parameters of the
interaction strengths of the target–electron (T–e), projectile–
electron (P–e), and projectile–target (P–T) are represented by
αT =−1/kT, αP =−1/kP, and αPT = µ/kPT, respectively. 𝑘P

' 𝑘T−𝐾 f /µ = 𝑣T−𝑣 f and 𝑘PT '𝐾 f +𝑘T/2 are respec-
tively the relative momentums of the P–e and P–T subsystems.
µ is the reduced mass of the projectile–target ion subsystem.

Looking closely at the final state wave (3), we can see
some physical meanings it represents. First, the interaction be-
tween the heavy particles (P–T) is represented by a two-body
Coulomb wave function 1F1(iαPT,1,−ikPTξPT) in Eq. (3).
The PT interaction can be removed with an impact parame-
ter approximation, since they do not contribute to the DDCS.
However, in the present approximation, we have adopted all
quantum mechanical treatments. The internuclear wave func-
tion will be kept not only in the final state, but also in the per-
turbative potential. Second, the series in Eq. (3) indicates the
expansion of a correlated three-body function on the basis of a
separable set of two-body functions, and each partial sum will
give an approximation order. The correlation between the mo-
tion of the electron relative to the target nucleus and projectile
is introduced approximately by the sum over all of these prod-
uct states with different coefficients to Eq. (5). Third, it should
be noted, besides a normalization factor, the lowest order of
the final state, i.e., m = 0, is the well-known three-Coulomb
wave function[29,30] and the correlation is included in higher
orders of the series expansion. In addition, taking into ac-
count the differential properties of confluent hypergeometric
functions[31]

(−ik jξ j)
m

1F1(iα j +m,1+2m,−ik jξ j)

=
(1+m)m

(iα j)m

∂ m

∂bm 1F1(iα j,1+m, i− ibk jξ j))
∣∣∣
b=1

, (6)

so the states (6) are, apart from a plane-wave factor, the
general solutions of a Schrödinger equation for a system
of two particles interacting through Coulomb potentials.
Therefore, the states (−ikTξT)

m
1F1(iαT+m,1+2m,−ikTξT)

and (−ikPξP)
m

1F1(iαP + m,1 + 2m,−ikPξP) represent the
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electron–target and electron–projectile interactions, respec-
tively. The former represents the ionization of the hydrogen
atom, and the latter is the capture of electron by the projection
into a continuous state. We would like to note that each prod-
uct of the states satisfies the correct asymptotic conditions in
the region where all particles are far from each other.[14]

Finally, the transition matrix Tf i can be calculated using
the final state (3) in the following way:[24]

Tf i = lim
M→∞

T M
f i = lim

M→∞
CD̂

M

∑
m=0

a∗mTm, (7)

with

D̂ =

(
∂ 2

∂ε1∂ε3
− ∂ 2

∂ε1∂ε2

)∣∣∣
ε1=0+,ε2=0+,ε3=0+

,

a∗m =
(−iαT)m(−iαP)m

(m)m(1)2mm!
, (8)

where C is a constant, and D̂ is a parametric differential opera-
tor. Here we have introduced the parameters εi (i = 1,2,3) for
the convenience of our calculations, and take the limit εi→ 0+

after solving the partial derivative.
The Tm has been simplified with the integral representa-

tion of the confluent hypergeometric function and the Cauchy
integral theorem in our recent work.[24] However, the result is
difficult for numerical integration in the present situation due
to the large numerical sensitivity of the calculations when kP

becomes very small.[9] It corresponds to an ejected electron
speed 𝑣T close to the projectile speed 𝑣 f , that is, in the re-
gion of electron–projectile velocity-matching. The absolute
value of the Sommerfeld parameter αP can be greater than
30 a.u. in the case of larger energy loss.[3,8,9,25,26] We can
see that the Sommerfild parameters αP of these larger abso-
lute values will lead to the fast oscillations of the integral ker-
nel t−iαP−1(1− t)iαP+m from the integral representation of the
confluent hypergeometric function and the simplified integral
is difficult to converge, even if the number of integral nodes
is very large (see Eq. (27) in Ref. [24]). In this case, the
confluent hypergeometric functions that need to be analyti-
cally integrated in advance should be carefully selected. In
other words, integrals to be completed ahead of time should
include the confluent hypergeometric functions with αP pa-
rameter. We have adopted the following methods. After ex-
changing the derivative representations of formulas (12) and
(13) in Ref. [24], we choose the last two confluent hyperge-
ometric functions in Eq. (14) in Ref. [24] to be expressed in
the contour integral (first simplification), and the first function
in Eq. (14) in Ref. [24] is selected as the definite integral rep-
resentation. Similar mathematical techniques have been suc-
cessfully applied to calculate the FDCS for single ionization
of helium by AuQ+ impact using the 3C model (see Ref. [32]
and references therein).

After a large dose of mathematical manipulation, the 3D
and 2D integrals (depending on the summation index m) are
reached. Here only the final results are given

Tm>0 = (4π)2bm
Γ(1+m)

Γ(−iαT)Γ(1+m+ iαT)

×
∫ 1

0
dtt−iαT−1(1− t)iαT+m

∫
∞

0
ds

i−m

Γ(m)

×
∫

∞

0
dττ

m−1Fm(a,b), (9)

with

Fm(a,b) =
∂ 3m

∂a2m∂bm

[
1

σ0

(
σ0 +σ1

σ0

)iαPT
(

σ0 +σ2

σ0

)iαP+m

× 2F1(−iαPT,−iαP−m;1;Z)
]∣∣∣∣

a=1,b=1
, (10)

bm =
(1+m)m

(−iαP)m

(1)m

(−iαP−m)m

(1+m)m

(−iαT)m
,

Z =
σ1σ2−σ0σ3

(σ0 +σ1)(σ0 +σ2)
. (11)

And for m = 0,

Tm=0 = (4π)2 Γ(1)
Γ(−iαT)Γ(1+iαT)

∫ 1

0
dtt−iαT−1(1−t)iαT

×
∫

∞

0
ds
[

1
σ0

(
σ0 +σ1

σ0

)iαPT
(

σ0 +σ2

σ0

)iαP

×2F1(−iαPT,−iαP;1;Z)
]∣∣∣∣

a=1,b=1,τ=0
. (12)

Here, 2F1 stands for the Gaussian hypergeometric function.
Readers should pay special attention to the difference between
the present formulas (9)–(12) and the formulas (27) and (28)
in Ref. [24]. The parameters σ0,σ1,σ2, and σ3 are

σ0 = α0s2 +2β0s+ γ0, σ1 = α1s2 +2β1s+ γ1,

σ2 = α2s2 +2β2s+ γ2, σ3 = α3s2 +2β3s+ γ3, (13)

with

α0 = q2 +(ε2 + ε3)
2 +2τ(ε2kP + ε3kP− i𝑞 ·𝑘P),

α1 = 2 [𝑞 ·𝑘PT− i(ε2 + ε3)kPT− iτ(kPkPT +𝑘P ·𝑘PT)] ,

α2 =−2a [𝑞 ·𝑘P + i(ε2 + ε3)kP] ,

α3 =−2a(𝑘P ·𝑘PT + kPkPT), (14)

β0 = ξ1(e2
3 +𝑞2

2 + ε
2
2 )+ ε2(e2

3 +ξ
2
1 +𝑞2

1)

+ e3
[
𝑞2

12 +(ξ1 + ε2)
2] ,

β1 = 2ξ1(𝑞2 ·𝑘PT− iε2kPT)− ikPT(ξ
2
1 +𝑞2

1 + e2
3)

−2e3 [𝑞12 ·𝑘PT + i(ξ1 + ε2)kPT] ,

β2 =−2aξ1(𝑞2 ·𝑘P + ie3kP)−2aε2(𝑞1 ·𝑘P + ie3kP)

− iakp
[
𝑞2

12 +(ξ1 + ε2)
2] ,

β3 =−2aξ1𝑘P ·𝑘PT +2iakPT(𝑞1 ·𝑘P + ie3kP)

+2iakp [𝑞12 ·𝑘PT + i(ξ1 + ε2)kPT] , (15)

γ0 =
[
𝑞2

12 +(ξ1 + ε2)
2][(ξ1 + e3)

2 +𝑞2
1
]
,
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γ1 =−2
[
(ξ1 + e3)

2 +𝑞2
1
]
[𝑞12 ·𝑘PT + i(ξ1 + ε2)kPT] ,

γ2 =−2a
[
𝑞2

12 +(ξ1 + ε2)
2] [𝑞1 ·𝑘P + i(ξ1 + e3)kP] ,

γ3 = 4a [𝑞1 ·𝑘P + i(ξ1 + e3)kP]

× [𝑞12 ·𝑘PT + i(ξ1 + ε2)kPT] , (16)

𝑞1 = (1−bt)𝑘T− iτ𝑘P, 𝑞2 = 𝑞− iτ𝑘P,

𝑞12 = (1−bt)𝑘T−𝑞, 𝑞 =𝐾i−𝐾 f ,

ξ1 = 1+ ε1− ibtkT, e3 = ε3 + τkP. (17)

The detailed expressions of σi (i = 0–3) can be obtained
by substituting Eqs. (14)–(17) into Eq. (13). Readers can see
that these σi are the functions of a and b. And these expres-
sions are the linear and/or quadratic power functions of a and
b. There is no difficulty in principle in completing the deriva-
tion of Eq. (10) directly. However, the consequence of the
direct derivation is that the results will become extremely ver-
bose and complex, especially for higher-order partial deriva-
tives. For example, when m = 5, it is the partial derivative
of 15th order. The convenient way is that the derivation of
Eq. (10) is done by the MATHMATICA package.

In addition, the forward difference formulas for these pa-
rameter derivatives (8) are used to ensure the convergence of
the integration results.

After completing the analytical derivation of Eq. (10), the
three integrals in Eq. (9) can be realized numerically by the
Gauss–Legendre quadrature method for parameter t and the
Gauss–Laguerre quadrature method for parameters s and τ .
Convergence of the results has been tested by increasing the
number of quadrate points to achieve an accuracy of 0.1%. It
is necessary to sum only a few terms of the series (7).

To represent the different contributions of the terms of the
sum (7) we define

d2σ

dEe dΩP
= (2π)4

µ
2
PA

K f kT

Ki

∫
|T M

f i |2 dΩ e , (18)

which represents the DDCSp calculated considering up to or-
der M.

However, as observed in the laboratory, where we assume
that the target is initially at rest, it is

d2σL

dEe dΩ L
P
=

m2
P

µ2
PA

d2σ

dEe dΩP
, (19)

here mP is the mass of the projectile. Whereas, under the con-
ditions studied here, dE is essentially the same in the relative
and laboratory frames, dΩP is different by a factor of m2

P/µ2
PA.

In expression (18), for the final state (3) there exist several
alternatives, corresponding to different proposed approxima-
tions. Therefore, we label the present calculation as CCW-
PT to distinguish it from the usual CCW[13,16,17,19] theory
where the PT interaction is not accounted for (referred to
as the CCW-noPT). The calculations using M = 0 are the

lowest order in the transition matrix, the expression (7) re-
duces to the well-known 3C approximation.[29,30,33–35] The
CCW-noPT calculation can be obtained by setting αPT = 0 in
Eqs. (10) and (12), and the 2C approximation can be recov-
ered by setting αPT = 0 amd M = 0. It should be pointed
out that the normalized coefficients of the 3C (2C) wave
functions mentioned in the next section are all calculated
by using N3C = e−π(αP+αT+αPT)Γ(1− iαP)Γ(1− iαT)Γ(1−
iαPT) (N2C = e−π(αT+αP)/2Γ(1− iαT)Γ(1− iαP)), at m = 0.
The calculation of the dynamic correlation involved in DDCSp

is based on this. The purpose is to examine the contribution of
the correlation effect to the differential cross section more di-
rectly.

3. Results and discussion
In order to check the role of dynamic correlation in the

model, we have computed the DDCSp, by Eq. (19), for 75-
keV proton impact ionization of hydrogen corresponding to
the experimental data of Refs. [8,9]. Figure 1 presents our re-
sults for DDCSp as a function of the proton scattering angle θ

at fixed values of the energy loss, ∆E = 30 eV, 40 eV, 50 eV,
and 53 eV. We compare the theoretical results given by the
CCW-PT (thick solid curves), 3C (dashed curves), and SBA-C
(thin solid curves) calculations with the absolute experimental
data from Refs. [8,9]. As mentioned above, the 3C and CCW-
PT calculations are conceptually similar. In both models, the
higher-order effects are accounted for in the final state, and
the PT interaction has been accounted for not only in the final
state, but also in the transition operator as well. They differ
insofar as the CCW-PT approach, in contrast to the 3C model,
accounts for dynamical correlation contributions in the final
state.

It can be seen from Fig. 1 that the theoretical results
describe well the main tendencies of the experimental data.
However, the angular distributions and relative magnitude
differences are found between the CCW-PT and 3C results.
It is very encouraging to see that the CCW-PT calculations
exhibit the improvement over the 3C results. Especially at
∆E = 30 eV, the CCW-PT model reproduces the shape of the
θ dependence of the measured DDCSp almost perfectly. We
would like to explain that these improvements are due to the
correlation considered in the CCW-PT approximation and not
in the 3C approximation. As far as the narrowing effect is con-
cerned, although the 3C result is improved by the CCW-PT
model, it fails still to reproduce the enhancement of DDCSp at
small values of θ for the spectrum measured at ∆E = 53 eV.
However, our CCW-PT result is in much better agreement
with experiment than the SBA-C result[9] at ∆E = 53 eV. The
agreement, in terms of magnitude, between experiment and
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Fig. 1. Double differential cross section for ionization of the hydrogen atom by 75 keV proton impact, is plotted as a function of the
projectile scattering angle for fixed energy losses as shown in the legends. The experimental data are from measurements by Laforge
et al.[8] and Schulz et al.[9] The notations of the theories: thick solid curves (red), CCW-PT; dashed curves (black), 3C; thin solid
curves (blue), SBA-C.[9]

the two theoretical calculations is mixed for all ∆E. In gen-
eral, the present results suggest that the three-body dynamic
correlation plays an important role, especially in the case of
smaller energy losses. It can be seen that the changes between
the cross sections displayed by the CCW-PT and 3C are rela-
tively small for ∆E = 50 eV and 53 eV. In fact, it can be seen
from the following discussion that the PT interaction is more
important than the dynamic correlation.

In order to test the role of the PT interaction and dynamic
correlation effect in the differential cross section, we analyze
the models described here in more detail by, starting from 2C
(no PT interaction in the final state), successively adding dy-
namic correlation (denoted by CCW-noPT) and PT interaction
(CCW-PT) using the respective methods of these models with
goal of seeing each effect’s relative importance in the DDCSp.
All three models contain the PT interaction in operator (Vi) of
the transition amplitude (2). The 2C does not deal with the
PT interaction and correlation in the final state. These cal-
culations are shown in Fig. 2. The thin solid lines represent
the 2C results and dashed lines are CCW-noPT calculations.
The thick solid lines still represent the CCW-PT results. As
can be seen from Fig. 2, the 2C results without considering
the PT interaction and dynamic correlation perform almost
well in predicting experimental data, especially for low en-
ergy losses ∆E (= 30 eV, 40 eV), but for large energy losses
∆E (= 50 eV, 53 eV), it predicts DDCSp much smaller than the
experimental data at small scattering angles. This can be ex-
plained simply by the fact that the projectiles with a larger en-
ergy loss (corresponding to a larger electron emission speed)

are more likely to approach the target nucleus and thus have
more opportunities for PT interaction. So with the increase
of the energy loss, the PT interaction becomes more promi-
nent. Therefore, the 2C result is unreliable when the PT in-
teraction is in effect. The 2C calculation here reproduces the
experimental data better than the 3C model (see Fig. 1) for
low energy losses ∆E (= 30 eV, 40 eV), which seems to indi-
cate that the 3C model overestimates the importance of the PT
interaction (i.e., ionization due to a binary projectile–electron
interaction is kinematically possible). In fact, as can be seen
from Fig. 2, the CCW-noPT calculations are significantly re-
duced by adding correlation to the 2C at small scattering an-
gles. Only after adding the PT interaction, the CCW-PT re-
sults recover the experimental trend. Therefore, the ionization
processes can be considered to be still dominated by the three-
body dynamics.[8] At the same time, it can be seen from this
figure that the dynamic correlation (CCW-noPT) has obvious
effect on both sides of small scattering angles and large ones.
The differences are that in small (large) scattering angles, the
DDCSp are decreased (enhanced) by adding correlation to 2C.
However, for larger energy losses and small scattering angles,
the 2C calculations are underestimated relative to these exper-
imental data. After taking into account the dynamic correla-
tion, although the 2C results are improved by the CCW-noPT
calculation, the DDCSp are still underestimated in some small
angles. Only after the PT interaction is included, the CCW-PT
results restore the trend of the experimental results. There-
fore, for the cases of larger energy loss, the PT interaction is
more important than the dynamic correlation in the whole an-
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gle ranges, as shown in Fig. 2. If only the correlated effect is
accounted for by the CCW-noPT, the calculated DDCSp bears
no resemblance to the experimental data at all in some aspects
and somewhat worse than the 2C. The CCW-PT model com-
bines the favored methods of including the long-range three-
body interaction in the ionizing collision and as a result yields
the best overall agreement with experiment among the models
presented here.

To analyze the different effects of each of the terms in
the series (7), we have computed different DDCSp for ioniza-
tion of hydrogen atom by 75-keV proton impact. The results
are displayed in Fig. 3. The left panels show the independent
DDCSp with different summation indexes m (0,1, . . . ,5), and
the convergence results of these matrix elements for different
orders M appear in the right panels. From the left panels of
Fig. 3, it can be seen that the larger the index m is, the smaller
the DDCSp is. Starting from m= 1, it basically reduces by one
order of magnitude in turn. That is to say, with the increase of
m, DDCSp becomes smaller and smaller. The convergence
is shown in the right panels of the figure, where the DDCSp

calculated with M = 0,1, . . . ,5, i.e., the individual DDCSp for
m = 0,1, · · · ,5 have been summed; each result represents the
coherent sum of different orders in the transition matrix (7).

As seen from right panels of Fig. 3, besides the CCW
(M = 0,1,2), the shape and the magnitude of each theoretical
curve (M = 3,4,5) are approximately the same, respectively.
This is further confirmation that considering up to order M = 2
is enough to calculate the DDCSp in CCW approximation.
The fact clearly shows that the main correction is provided by
the second order of the series (M = 2) and the higher orders in-

troduce only small changes in the shape of the DDCSp, which
can be completely ignored (also see Ref. [17] and references
therein). Therefore, it is clear that the series expression (7) has
an excellent numerical convergence. However, all the calcula-
tions described above are still carried out with M = 5.

The data of Fig. 1 are shown again in Fig. 4, but this time
they are compared with the corresponding WP-CCC calcula-
tions of Abdurakhmanov et al.[12] (performed using the coher-
ent (coh) and incoherent (inc) combinations of the direct ion-
ization (DI) and electron capture into continuum (ECC) ampli-
tudes). The direct ionization and electron capture to the con-
tinuum channels are treated separately within the framework
of the semiclassical two-center convergent close-coupling ap-
proach. So it leads to two ways to obtain the differential cross
section (see Ref. [12] for details).

Compared with the WP-CCC coh and WP-CCC inc at
∆E = 30 eV and 40 eV, the former agrees better with the ex-
periment at large scattering angle. But they are considerably
higher than the measurements at small scattering angles. How-
ever, our CCW-PT results just make up for the shortcomings
of the WP-CCC results.

At ∆E = 50 eV, the WP-CCC (including the coherent and
incoherent) results are in good agreement with experiment in
the entire range of scattering angles considered. Our CCW-PT
results are slightly higher than the WP-CCC in the range of
scattering angles 0.2 < θ < 0.4 mrad. As the energy loss is
increased to 53 eV, the agreement between the WP-CCC re-
sults and the experiments appears to deteriorate. However, our
CCW-PT result is in much better agreement with experiment
than the WP-CCC result at ∆E = 53 eV.
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Fig. 2. Same as Fig. 1, denoted as follows: dashed curves (blue), CCW-noPT; thin solid curves (black), 2C.
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Fig. 3. The same as in Fig. 1 different Double differential cross section calculated with m = 0,1,2, . . . ,5 (left panels), and with
M = 0,1,2, . . . ,5 (right panels). The different theoretical curves are noted in the legend.

From the comparison between these theories and experi-
ments in Fig. 4, except for the case of ∆E = 50 eV, our CCW-
PT results are generally better than the WP-CCC ones. Es-
pecially at small scattering angle, the agreement between the
CCW-PT and experiment is better than the WP-CCC. It is well
known that the perturbative approach (CCW-PT) is more suit-
able for the treatment of small angle scattering systems. Since
our calculation does not account for the capture channel, the
comparison between experiment and theory does not allow
for definite conclusions regarding its importance. The result-
ing discrepancies among different theories and with experi-
mental data seem to lack any systematic pattern that could be

used to track the physics underlying the observed features in
the DDCSp or which is missing (or not sufficiently accounted
for) in theory.[7] However, WP-CCC is considered to be able
to provide a sufficient description of the ionization dynam-
ics. The surprising observation of qualitative discrepancies be-
tween experiment and theory shows that theory is still facing
significant problems. The discussion above suggests that iden-
tifying the mechanisms underlying the structures in the differ-
ential cross section requires having theoretical models which
yield better overall agreement with the experimental data. Our
results show that the CCW-PT model is in effective range at
least at 75 keV projectile energy. Of course, this model still
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needs to test its applicability by comparing the calculation and
experiment of more collision systems. Generally speaking,
considering the relatively large value of the perturbation pa-

rameter (projectile charge to velocity ratio), the applicability
of the perturbation method to this kind of collision is ques-
tionable.
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Fig. 4. Double differential cross section for 75 keV proton-impact ionization of atomic hydrogen for fixed energy losses (as indicated in
the legends). The present CCW-PT results are compared with the corresponding WP-CCC calculations of Abdurakhmanov et al.[12]

[resulting from the coherent (coh) and incoherent (inc) combinations of the direct ionization and electron capture into continuum
amplitudes] and experimental measurements of Laforge et al.[8] and Schulz et al.[9]

4. Conclusions
To sum up, we have carried out CCW-PT calculations

of DDCSp for the ionization of atomic hydrogen by a 75-
keV proton impact. We have assessed the dynamic correla-
tion taken into account in the CCW-PT theory by comparing
it with the usual 3C. Our results are also compared with those
of SBA-C and WP-CCC. One of the characteristics of the dy-
namic correlation described by the CCW-PT is that it improves
the consistency between the theoretical results of DDCSp and
the experimental data. The CCW-PT model is overall in good,
but not perfect, agreement with the measured data. The data
are compared to other theoretical calculations and the large
differences between the various models show that the cross
sections are quite sensitive to the details of the description of
the PT interaction. For example, if only the correlated effect
is accounted for (CCW-noPT), the calculated DDCSp bears no
resemblance to the experimental data at all in some aspects,
and is somewhat worse than the 2C. On the other hand, if
the PT interaction is incorporated on top of the correlation,
reasonable qualitative agreement is achieved. It should also
be noted that with the increase of ∆E, the PT interaction be-

comes more prominent. It is conceivable that the characteris-
tics observed in the data are not only due to correlation, but
also due to the PT interaction to a large extent. This is consis-
tent with the large body of already published papers on single
ionization.[4,8–10,20,21,36] It confirms that both the correlation
and PT interaction which should be considered overall in our
model, can take a relatively important role in the description
of this collision process, especially for the large energy loss.

Compared with the experimental data and the calculated
results, this difference is surprising, because P+H represents
the simplest system, and theoretical processing is not troubled
by complex many-electron states. Therefore, there are still
some shortcomings in the current model in the description of
ionization events. We should note that in the CCW-PT approx-
imation, the initial and the final states are not orthogonal. And
the CCW-PT methods introduce correlation in the final state
but keep the initial state uncorrelated. However, Ciappina and
co-workers[19] have indicated that the correlation in the ini-
tial state is necessary to describe the DDCS. The next step in
this direction will be to develop some scheme where we can
model an equivalent correlated initial channel[19] replacing the
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undistorted Born-approximation initial one.
On the other hand, according to the WP-CCC results of

Abdurakhmanov et al.,[12] it is shown that the electron capture
to continuous state is more important than direct ionization in
the collision system studied here with the increase of the en-
ergy loss, but the capture and ionization channels of the final
state (3) cannot be completely separated in our treatment. In
the calculation of differential cross section, our model is ac-
tually equivalent to the coupling of the two channels. To our
knowledge, the calculation of capture channel is not consid-
ered in the perturbation theory dealing with this problem (see
Refs. [8,9,28] for details). The WP-CCC method represents
a fully nonperturbative treatment of the three-body collision
system, and it can be said the most accurate theoretical results
reported so far. Therefore, in order to improve the ability and
reliability of perturbation model to solve practical problems,
one of our tasks is to add the calculation of electron capture
channel in the model. Of course, it is still a challenging work
in perturbation theory. As a preliminary attempt and conve-
nient calculation, some meaningful results may be obtained
by separating 3C wave functions and treating the transition
amplitudes of the direct ionization and electron capture to con-
tinuum channels separately. In fact, an ultimate test of the the-
oretical description of the few-body dynamics in atomic col-
lisions would be provided by FDCS measurements for P+H
ionization. Therefore, the fully differential experimental data
would be very welcome. We hope that the present work can
prompt further theoretical and experimental studies of the ion-
ization process so that the role of dynamic correlation may be
better understood.
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