Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104212    DOI: 10.1088/1674-1056/abab74
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor

Lu-Wei Qi(祁路伟)1,2,3, Jin Meng(孟进)2, Xiao-Yu Liu(刘晓宇)1, Yi Weng(翁祎)1, Zhi-Cheng Liu(刘志成)1, De-Hai Zhang(张德海)2,†, Jing-Tao Zhou(周静涛)1,‡, and Zhi Jin(金智)1
1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
2 National Space Science Center, the Chinese Academy of Sciences, Beijing 100190, China
3 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear CV characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.

Keywords:  C-V characteristic      physics-based model      terahertz monolithic integrated circuit (TMIC)      Schottky barrier varactor  
Received:  14 April 2020      Revised:  03 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  73.61.Ey (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
Corresponding Authors:  Corresponding author. E-mail: zhangdehai@mirslab.cn第一通讯作者 Corresponding author. E-mail: zhoujingtao@ime.ac.cn   

Cite this article: 

Lu-Wei Qi(祁路伟), Jin Meng(孟进), Xiao-Yu Liu(刘晓宇), Yi Weng(翁祎), Zhi-Cheng Liu(刘志成), De-Hai Zhang(张德海)†, Jing-Tao Zhou(周静涛)‡, and Zhi Jin(金智) Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor 2020 Chin. Phys. B 29 104212

Fig. 1.  

(a) Optical microscopy image of a fabricated SBV. The SEM photographs of Schottky metal-brim structure details are added. (b) SBV with Schottky metal-brim. (c) Conventional SBV.

Fig. 2.  

Energy band diagram of MIS structure.

Fig. 3.  

(a) Forward IV characteristics with different structures in log scale (similar with diameter @3 μm). (b) Reverse breakdown characteristics with different structures.

Parameter Value
Dielectric-layer thickness δ/nm 0.256
Interface acceptor density Dit/cm2⋅eV 2.7 × 1012
Dielectric constant[21] 4.0
Capacitance ideal coefficient η 0.7
Correction term D1 0.36
Table 1.  

Key parameters of the modified model.

Fig. 4.  

Comparison of the measured CV curves of the SMB-SBV structure and simulated curves based on different models.

Fig. 5.  

Equivalent circuit of the 215 GHz TMIC tripler.

Fig. 6.  

(a) SEM image of a fabricated tripler TMIC chip. (b) SEM image of a pair of varactors in parallel.

Fig. 7.  

Photo of test-site about 215 GHz tripler TMIC.

Fig. 8.  

(a) Measured input and output power as a function of frequency. (b) Measured output power and efficiency as a function of input power at different frequency.

Fig. 9.  

Comparison of the measured efficiency and simulated curves based on different physics-based CV models.

References Technology Frequency/GHz Max output power/mW Efficiency
UESTC[27] Tripler TMIC 330–500 0.19 2%(max)
ICET[28] Membrane tripler TMIC 430 0.215 4.3%(max)
VDI[29] Tripler TMIC 140–220 3%(typical)
CETC[30] Tripler TMIC 325–500 0.45 4.4%(max)
This paper SMB-structure tripler TMIC 215 10.2 4.5%(max)
Table 2.  

Performance comparison of the frequency multipliers based on TMIC.

[1]
Maestrini A, Ward J, Chattopadhyay G 2008 Frequenz 62 118 DOI: 10.1515/FREQ.2008.62.5-6.118
[2]
Mehdi I, Siles J V, Lee C 2017 Proc. IEEE 105 990 DOI: 10.1109/JPROC.2017.2650235
[3]
Anwar M, Dhar N K, Crowe T W 2010 Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense 7671 DOI: 10.1117/12.865882
[4]
Lancaster M J, Guo C, Powell J 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1-1 DOI: 10.1109/IRMMW-THz.2019.8874014
[5]
Gatilova L, Maestrini A, Treuttel J 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves 1 2 DOI: 10.1109/IRMMW-THz.2019.8873728
[6]
Crowe T W, Hesler J L, Porterfield D W 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics 621 DOI: 10.1109/ICIMW.2007.4516653
[7]
Amir F, Mitchell C, Missous M 2010 The Eighth International Conference on Advanced Semiconductor Devices and Microsystems 29 DOI: 10.1109/ASDAM.2010.5667005
[8]
Ding J Q, Maestrini A, Gatilova L 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves 1 2 DOI: 10.1109/IRMMW-THz.2019.8873979
[9]
Siles J V, Grajal J 2010 IEEE Trans. Microwave Theory Tech. 58 1933 DOI: 10.1109/TMTT.2010.2050103
[10]
Perez-Moreno C G, Grajal J 2014 IEEE Trans. Terahertz Sci. Technol. 4 597 DOI: 10.1109/TTHZ.2014.2337655
[11]
Perez-Moreno C G, Grajal J, Viegas C 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications 1 DOI: 10.1109/GSMM.2016.7500307
[12]
Kolberg E L, Tolmunen T J, Frerking M A 1992 IEEE Trans. Microwave Theory Tech. 40 831 DOI: 10.1109/22.137387
[13]
Kiuru T, Mallat J, Raisanen A V 2011 IEEE Trans. Microwave Theory Tech. 59 2108 DOI: 10.1109/TMTT.2011.2146268
[14]
Moro-Melgar D, Maestrini A, Treuttel J 2016 IEEE Trans. Electron Devices 63 3900 DOI: 10.1109/TED.2016.2601341
[15]
Ren T, Zhang Y 2017 IEEE MTT-S International Microwave Symposium (IMS) 2003 DOI: 10.1109/MWSYM.2017.8059060
[16]
Qi L W, Liu X Y, Meng J 2020 Chin. Phys. B 29 057306 DOI: 10.1088/1674-1056/ab81fc
[17]
Schwarz M, Kloes A 2016 IEEE Trans. Electron Devices 63 2757 DOI: 10.1109/TED.2016.2569488
[18]
Moghadam H A, Dimitrijev S, Han J S 2014 Materials Science Forum 778 710
[19]
Mateos J, González T, Pardo D 1999 Semicond. Sci. Technol. 14 864 DOI: 10.1088/0268-1242/14/9/320
[20]
Ellis J A, Barnes P A 2000 Appl. Phys. Lett. 76 124 DOI: 10.1063/1.125677
[21]
Mönch W 1999 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 17 1867 DOI: 10.1116/1.590839
[22]
Neamen D A 2012 Semiconductor physics and devices: basic principles New York, NY McGraw-Hill 212 DOI: 10.1016/S1369-7021(06)71498-5
[23]
Nawawi A, Amaratunga G, Umezawa H 2014 Trans. Mater. Res. Soc. Jpn. 39 297
[24]
Raisanen A V 1992 Proceedings of the IEEE 1842 DOI: 10.1109/5.175259
[25]
Louhi J T 1994 IEEE Microwave and Guided Wave Letters 4 107 DOI: 10.1109/75.282574
[26]
Siles J V, Maestrini A, Alderman B 2011 IEEE Microwave and Wireless Components Letters 21 332 DOI: 10.1109/LMWC.2011.2134080
[27]
Ren T H, Zhang Y, Yan B, Xu R M, Yang CY, Zhou J T, Jin Z 2015 Chin. Phys. Lett. 32 020702 DOI: 10.1088/0256-307X/32/2/020702
[28]
Yang D B, Xing D, Liang S X, Zhang L S, Xu P, Feng Z H 2019 Chinese Journal of Lasers 46 0614035 DOI: 10.3788/CJL
[29]
[30]
Xin H, Cheng X, Deng J 2016 IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT) 86 DOI: 10.1109/UCMMT.2016.7873971
[1] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
No Suggested Reading articles found!