Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087501    DOI: 10.1088/1674-1056/ab9736
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics

Qi Pan(潘祺), Bao-Jin Chu(初宝进)
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences(CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  The piezoelectric, ferromagnetism, and magnetoelectric response of BiFeO3-BaTiO3 ceramics with the compositions around the morphotropic phase boundary (MPB) of the solid solution are systematically investigated after the ceramics have been quenched from a high temperature. We find that the ferromagnetism of the quenched ceramics is greatly enhanced. An enhanced piezoelectric response d33 larger than 200 pC/N, which could be sustained up to 350℃, is measured. As a result of enhanced ferromagnetism and piezoelectric response, a large magnetoelectric response ~1.3 V/cm·Oe (1 Oe=79.5775 A·m-1) is obtained near the mechanical resonance frequency of the quenched ceramic samples. Our research also shows that in addition to the ferromagnetism and piezoelectric response, the mechanical quality factor is another important parameter to achieve high magnetoelectric response because the physical effects are coupled through mechanical interaction in BiFeO3-based materials. Our work suggests that quenching is an effective approach to enhancing the magnetoelectric response of BiFeO3-based materials and the materials belong to single-phase multiferroic materials with high magnetoelectric response.
Keywords:  multiferroic materials      magnetoelectric      ferromagnetic      piezoelectric  
Received:  28 March 2020      Revised:  24 May 2020      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  77.55.H- (Piezoelectric and electrostrictive films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672261 and 51373161) and the National Key Research and Development Program of China (Grant No. 2017YFA0701301).
Corresponding Authors:  Bao-Jin Chu     E-mail:  chubj@ustc.edu.cn

Cite this article: 

Qi Pan(潘祺), Bao-Jin Chu(初宝进) Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics 2020 Chin. Phys. B 29 087501

[1] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
[2] Fiebig M, Lottermoser T, Frohlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818
[3] Ravez J, Abrahams S C and Pape R D 1989 J. Appl. Phys. 65 3987
[4] Sarraute S, Ravez J, VonderMuhll R, Bravic G, Feigelson R S and Abrahams S C 1996 Acta. Cryst. B. 52 72
[5] Ravez J 1997 J. Phys. III France 7 1129
[6] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[7] Palai R, Katiyar R S, Schm H, Tissot P, Clark S J, Robertson J, Redfern S A T, Catalan G and Scott J F 2008 Phys. Rev. B 77 014110
[8] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[9] Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[10] Wang J, Neaton J B and Zheng H 2003 Science 299 1719
[11] Sharma P, Kumar A and Varshney D 2015 Solid State Commun. 220 6
[12] Kumara M and Yadav K L 2007 Appl. Phys. Lett. 91 242901
[13] Lee Y H, Wu J M and Lai C H 2006 Appl. Phys. Lett. 88 042903
[14] Kim J K, Kim S S and Kim W J 2006 Appl. Phys. Lett. 88 132901
[15] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R and Li R W 2017 Chin. Phys. B 26 067702
[16] Itoh N, Shimura T, Sakamoto W and Yogo T 2007 Ferroelectrics 356 19
[17] Zhang M, Zhang X Y, Qi X W, Li Y, Bao L and GuY H 2017 Ceram. Int. 43 16957
[18] Behera C and Pattanaik A K 2019 J. Mater. Sci-Mater. El. 089 00140
[19] Ryua G H, Hussaina A, Leea M H, Malik R A, Songa T K, KimW J and Kim M H 2018 J. Eur. Ceram. Soc. 18 30341
[20] Du X H, Zheng J H, Belegundu U and Uchino K 1998 Appl. Phys. Lett. 72 2421
[21] Wei Y X,Wang X T, Zhu J T, Wang X L and Jia J J 2013 J. Am. Ceram. Soc. 96 3163
[22] Zhen T, Jiang Z G and Wu J G 2016 Dalton Trans. 45 11277
[23] Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H, Kim W J and Do D 2015 Adv. Mater. 27 6976
[24] He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X and Gao C 2016 Chin. Phys. Lett. 33 67502
[25] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 87503
[26] Rao W, Wang Y B, Wang Y A, Gao J X, Zhou W L and Yu J 2014 Chin. Phys. Lett. 31 017503
[27] Wang Y A, Wang Y B, Rao W, Gao J X, Zhou W L and Yu J 2013 Chin. Phys. Lett. 30 047502
[28] Gupta R, Shah J, Chaudhary S and Kotnala R K 2015 J. Alloys Compd. 638 115
[29] Luo L, Jiang N, Zou X, Shi D, Sun T, Zheng Q, Xu C G, Lam K H and Lin D M 2015 Phys. Status Solidi A 212 2012
[30] Zhang M, Zhang X Y, Qi X W, Zhu H G, Li Y and Gu Y H 2018 Ceram. Int. 44 21269
[31] Bichurin M I, Filippov D A and Petrov V M 2003 Phys. Rev. B 68 132408
[32] Filippov D A, Bichurin M I, Nan C W and Liu J M 2005 J. Appl. Phys. 97 113910
[33] Jia Y M, Luo H S, Zhao X Y and Wang F F 2008 Adv. Mater. 20 4776
[34] Pan Q, Fang C, Luo H S and Chu B J 2019 J. Eur. Ceram. Soc. 39 1057
[35] Pan Q and Chu B J 2019 J. Appl. Phys. 125 154102
[36] IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, IEEE, New York, 1987
[37] Unruan S, Unruan M, Monnor T, Priya S and Yimnirun R 2015 J. Am. Ceram. Soc. 98 3291
[38] Kumar M M, Srinivas A and Suryanarayana S V 2000 J. Appl. Phys. 87 855
[39] Cao L, Zhou C R, Xu J W, Li Q L, Yuan C L and Chen G H 2016 Phys. Status Solidi A 213 52
[40] Wan Y, Li Y, Li Q, Zhou W, Zheng Q J, Wu X C, Zhu B P and Lin D M 2014 J. Am. Ceram. Soc. 97 1809
[41] Kumar M M, Srinath S, Kumar G S and Suryanarayana S V 1998 J. Appl. Phys. 188 203
[42] Wang T H, Ding Y, Tu C S, Yao Y D, Wu K T, Lin T C, Yu H H, Ku C S and Lee H Y 2011 J. Appl. Phys. 109 07D907
[43] Gotardo R A M, Viana D S F, Olzon-Dionysio M, Souza S D, Garcia D, Eiras J A, Alves M F S, Cotica L F, Santos I A and Coelho A A 2012 J. Appl. Phys. 112 104112
[44] Fujii T, Jinzenji S and Asahara Y 1988 J. Appl. Phys. 64 5434
[45] Bai F M, Wang J L, Wuttig M, Li J F, Wang N G, Pyatakov A P, Zvezdin A K, Cross L E and Viehland D 2005 Appl. Phys. Lett. 86 032511
[46] Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[6] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[7] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[8] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[9] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[10] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[11] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[12] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[13] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[14] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[15] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
No Suggested Reading articles found!