Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080702    DOI: 10.1088/1674-1056/ab90e6
GENERAL Prev   Next  

Structural and optical characteristic features of RF sputtered CdS/ZnO thin films

Ateyyah M Al-Baradi1, Fatimah A Altowairqi1, A A Atta1,2, Ali Badawi1, Saud A Algarni1, Abdulraheem S A Almalki3, A M Hassanien4, A Alodhayb5, A M Kamal6, M M El-Nahass2
1 Department of Physics, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
2 Department of Physics, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt;
3 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia;
4 Department of Physics, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Saudi Arabia;
5 Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
6 Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Abstract  

In this study, CdS/ZnO (2:3 mol%) thin films are successfully deposited on quartz substrates by using the sputtering technique. Good images on the structural and optical characteristic features of CdS/ZnO thin films before and after annealing are obtained. The CdS/ZnO thin films are annealed respectively at temperatures of 373 K, 473 K, and 573 K and the structural features are examined by XRD, ATR-FTIR, and FESEM. The optical properties of CdS/ZnO thin films such as refractive indices, absorption coefficients, optical band gap energy values, Urbach energy values, lattice dielectric constants, and high frequency dielectric constants are determined from spectrophotometer data recorded over the spectral range of 300 nm-2500 nm. Dispersion parameters are investigated by using a single-oscillator model. Photoluminescence spectra of CdS/ZnO thin films show an overall decrease in their intensity peaks after annealing. The third-order nonlinear optical parameter, and nonlinear refractive index are also estimated.

Keywords:  CdS/ZnO      thin films      structural &      optical properties  
Received:  27 March 2020      Revised:  26 April 2020      Accepted manuscript online: 
PACS:  07.79.-v (Scanning probe microscopes and components)  
  73.61.-r (Electrical properties of specific thin films)  
Fund: 

Project supported by the Deanship of Scientific Research, Taif University, Kingdom of Saudi Arabia (Grant No. 1-440-6136).

Corresponding Authors:  Ateyyah M Al-Baradi     E-mail:  thobyani@yahoo.com

Cite this article: 

Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass Structural and optical characteristic features of RF sputtered CdS/ZnO thin films 2020 Chin. Phys. B 29 080702

[1] Rajput J K and Purohit L P 2016 Nanosci. Technol. 3 1
[2] Nwanya A C, Deshmukh P R, Osujib R U, Maazad M, Lokhande C D and Ezema F I 2015 Sens. Actuat. B:Chem. 206 671
[3] McCool N S, Swierk J R, Nemes C T, Schmuttenmaer C A and Mallouk T E 2016 J. Phys. Chem. Lett. 7 2930
[4] Kuang W J, Li Q, Sun Y, Chen J and Tolner H 2016 Mater. Lett. 178 27
[5] Wang L, Wei H, Fan Y, Liu X and Zhan J 2009 Nanoscale Res. Lett. 4 558
[6] Sikarwar S, Yadav B C, Singh S, Dzhardimalieva G I, Pomogailo S I, Golubeva N D and Pomogailo A D 2016 Sensor Actuat. B:Chem. 232 283
[7] Xiong W 2016 Superlattice Microstruc. 98 158
[8] Vishwakarma A K and Yadava L 2018 Vacuum 155 214
[9] Fang F, Zhao D X, Li B H, Zhang Z Z, Zhang J Y and Shen D Z 2008 Appl. Phys. Lett. 93 233115
[10] Vasa P, Taneja P, Ayyub P, Singh B P and Banerjee R 2002 J. Phys.:Condens. Matter 14 281
[11] Wang X, Liu G, Lu G Q and Cheng H M 2010 Int. J. Hydrogen Energy 35 8199
[12] Sharma M and Jeevanandam P 2012 Mater. Res. Bull. 47 1755
[13] Kozhevnikova N S, Gyrdasova O I, Vorokh A S and Baklanova I V 2014 Nanosyst. Phys. Chem. Math. 5 579
[14] Velanganni S, Pravinraj S, Immanuel P and Thiruneelakandan R 2018 Physica B 534 56
[15] Meng X Q, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W and Wang X H 2007 Mater. Lett. 61 3535
[16] Rajeshwar K and de Tacconi N R 2001 Chem. Mater. 139 2765
[17] Alivisatos A P 1996 Science 271 933
[18] Anderson M A, Gorer S and Penner R M 1997 J. Phys. Chem. B 101 5895
[19] Caruso F 2001 Adv. Mater. 13 11
[20] Thambidurai M, Muthukumarasamy N, Arul N S, Agilan S and Balasundaraprabhu R 2011 J. Nanopart. Res. 13 3267
[21] Yang X, Yang Q, Hu Z, Guo S, Li Y, Sun J, Xu N and Wu J 2015 Sol. Energy Mater. Sol. Cells 137 169
[22] Nayak J, Sahu S N, Kasuya J and Nozaki S 2008 Appl. Surf. Sci. 254 7215
[23] Gao T, Li Q and Wang T 2005 Chem. Mater. 17 887
[24] Du N, Zhang H, Chen B, Wu J and Yang D 2007 Nanotechnology 18 115619
[25] Panda S K, Chakrabarti S, Satpati B, Satyam P V and Chaudhuri S 2004 J. Phys. D:Appl. Phys. 37 628
[26] Vasa P, Singh B P and Ayyub P 2005 J. Phys.:Condens. Matter 17 189
[27] Vanalakar S A, Mali S S, Suryawanshi M P, Tarwal N L, Jadhav P R, Agawane G L, Gurav K V, Kamble A S, Shin S W, Moholkar A V, Kim J Y, Kim J H and Patil P S 2014 Opt. Mater. 37 766
[28] Adegoke K A, Iqbal M, Louis H and Bello O S 2019 Mater. Sci. Energy Technol. 2 329
[29] El-Nahass M M 1992 J. Mater. Sci. 27 6597
[30] Di Giulio M, Micocci G, Rella R, Siciliano P and Tepore A 1993 Phys. Status Solidi A 136 K101
[31] El-Nahass M M, Atta A A, Abd El-Raheem M M and Hassanien A M 2014 J. Alloys Compd. 585 1
[32] Hassanien A M, Atta A A, El-Nahass M M, Ahmed S I, Shaltout A A, Al-Baradi A M, Alodhayb A and Kamal A M 2020 Opt. Quantum Electron. 52 194
[33] Konstantinov I, Babeva T and Kitova S 1998 Appl. Opt. 37 4260
[34] Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y and Ding J 2009 Powder Technol. 189 426
[35] Acharya A, Mishra R and Roy G S 2010 Lat. Am. J. Phys. Educ. 4 603
[36] Zandi S, Kameli P, Salamati H, Ahmadvand H and Hakimi M 2011 Physica B 406 3215
[37] Rawal S K, Chawla A K, Jayaganthan R and Chandra R 2014 Mater. Sci. Eng. B 181 16
[38] Dimova-Malinovska D, Nichev H and Angelov O 2008 Phys. Stat. Sol. (c) 5 3353
[39] Astinchapa B and Laelabadic K G 2019 J. Phys. Chem. Solids 129 217
[40] Beena D, Lethy K, Vinodkumar R, Pillai V M, Ganesan V, Phase D and Sudheer S 2009 Appl. Surf. Sci. 255 8334
[41] Goswami S and Sharma A K 2019 Appl. Surf. Sci. 495 143609
[42] Feneberg M, Nixdorf J, Lidig C, Goldhahn R, Galazka Z, Bierwagen O and Speck J S 2016 Phys. Rev. B 93 45203
[43] Ayyub P, Vasa P, Taneja P, Banerjee R and Singh B P 2005 J. Appl. Phys. 97 104310
[44] Vanalakar S A, Mali S S, Suryawanshi M P, et al. 2014 Opt. Mater. 37 766
[45] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[46] Wemple S H 1973 Phys. Rev. B 7 3767
[47] Palik D E 1985 Handbook of Optical Constants of Solids (Academic Press) p. 265
[48] Miller R C 1964 Appl. Phys. Lett. 5 17
[49] Wang C C 1970 Phys. Rev. B 2 2045
[50] Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlček M 1999 Mater. Lett. 39 122
[51] del Coso R and Solis J 2004 J. Opt. Soc. Am. B 21 640
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[8] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[11] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[14] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[15] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
No Suggested Reading articles found!