Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088904    DOI: 10.1088/1674-1056/ab8a41
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks

Guifeng Su(苏桂锋)1, Xiaowen Li(李晓温)1, Xiaobing Zhang(张小兵)2, Yi Zhang(张一)1
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China;
2 School of Physics, Nankai University, Tianjin 300071, China
Abstract  The dynamics of zero-range processes on complex networks is expected to be influenced by the topological structure of underlying networks. A real space complete condensation phase transition in the stationary state may occur. We study the finite density effects of the condensation transition in both the stationary and dynamical zero-range processes on scale-free networks. By means of grand canonical ensemble method, we predict analytically the scaling laws of the average occupation number with respect to the finite density for the steady state. We further explore the relaxation dynamics of the condensation phase transition. By applying the hierarchical evolution and scaling ansatz, a scaling law for the relaxation dynamics is predicted. Monte Carlo simulations are performed and the predicted density scaling laws are nicely validated.
Keywords:  finite density scaling      zero-range processes (ZRP)      scale-free networks  
Received:  08 January 2020      Revised:  06 April 2020      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.20.-y (Classical statistical mechanics)  
  02.50.Ey (Stochastic processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11505115).
Corresponding Authors:  Yi Zhang     E-mail:  yizhang@shnu.edu.cn

Cite this article: 

Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一) Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks 2020 Chin. Phys. B 29 088904

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[3] van der Meer D, van der Weele K and Lohse D 2002 Phys. Rev. Lett. 88 174302
[4] van der Meer D, van der Weele K and Lohse D 2004 J. Stat. Mech.:Theor. Exp. 04 P04004
[5] Krapivsky P L, Redner S and Leyvraz F 2000 Phys. Rev. Lett. 85 4629
[6] Bianconi G and Barabási A L 2001 Phys. Rev. Lett. 86 5632
[7] Su G F, Zhang X B and Zhang Y 2012 Eurphys. Lett. 100 38003
[8] Pathria R K and Beale P D 2011 Statistical Mechanics 3rd edn (New York:Academic Press)
[9] Liggett T M 1999 Stochastic Interacting Systems:Contact, Voter, and Exclusion Processes (Berlin:Springer)
[10] Schmittmann B and Zia R K P 1995 Statistical Mechanics of Driven Diffusive Systems edited by Domb C and Lebowitz J L (New York:Academic Press)
[11] Evans M R, Kafri Y, Koduvely H M and Mukamel D 1998 Phys. Rev. Lett. 80 425
[12] Evans M R Hanney T and Majumdar S N 2006 Phys. Rev. Lett. 97 010602
[13] Spitzer F 1970 Adv. Math. 5 246
[14] Evans M R and Hanney T 2005 J. Phys. A:Math. Gen. 38 R195
[15] Godréche C 2007 Lect. Notes Phys. 716 261
[16] Evans M R 2000 Braz. J. Phys. 30 42
[17] Großkinsky S, Schütz G M and Spohn H 2003 J. Stat. Mech.:Theor. Exp. 113 389
[18] Majumdar S N, Evans M R and Zia R K P 2005 Phys. Rev. Lett. 94 180601
[19] Godréche C and Luck J M 2012 J. Stat. Mech.:Theor. Exp. 2012 P12013
[20] Albert R and Barábasi A L 2002 Rev. Mod. Phys. 74 47
[21] Eguiluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V 2005 Phys. Rev. Lett. 94 018102
[22] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[23] Barabási A L and Albert R 1999 Science 286 509
[24] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[25] Barthelemy M, Barrat A, Pastor-Satorras R and Vespignani A 2004 Phys. Rev. Lett. 92 178701
[26] Sood V and Redner S 2005 Phys. Rev. Lett. 94 178701
[27] Noh J D, Shim G M and Lee H 2005 Phys. Rev. Lett. 94 198701
[28] Noh J D 2005 Phys. Rev. E 72 056123
[29] Tang M, Liu Z and Zhou J 2006 Phys. Rev. E 74 036101
[30] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
[31] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[32] Krug J 2000 Braz. J. Phys. 30 97
[33] Evans M R 1996 Europhys. Lett. 36 13
[34] Jain K and Barma M 2003 Phys. Rev. Lett. 91 135701
[35] Evans M R, Majumdar S N and Zia R K P 2004 J. Phys. A 37 L275
[36] Zia R K P, Evans M R and Majumdar S N 2004 J. Stat. Mech.:Theor. Exp. 2004 L10001
[37] Godréche C 2003 J. Phys. A:Math. Theor. 36 6313
[38] Großkinsky S and Hanney T 2005 Phys. Rev. E 72 016129
[39] Godréche C and Drouffe J M 2017 J. Phys. A:Math. Theor. 50 015005
[1] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[2] Integrated systemic inflammatory response syndrome epidemic model in scale-free networks
Cai Shao-Hong(蔡绍洪), Zhang Da-Min(张达敏), Gong Guang-Wu(龚光武), and Guo Chang-Rui(郭长睿) . Chin. Phys. B, 2011, 20(9): 090503.
[3] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[4] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming(张连明), Deng Xiao-Heng(邓晓衡), Yu Jian-Ping(余建平), and Wu Xiang-Sheng(伍祥生) . Chin. Phys. B, 2011, 20(4): 048902.
[5] Poor–rich demarcation of Matthew effect on scale-free systems and its application
Yan Dong(闫栋), Dong Ming(董明), Abdelaziz Bouras, and Yu Sui-Ran(于随然) . Chin. Phys. B, 2011, 20(4): 040205.
[6] Mobile user forecast and power-law acceleration invariance of scale-free networks
Guo Jin-Li(郭进利), Guo Zhao-Hua(郭曌华), and Liu Xue-Jiao(刘雪娇) . Chin. Phys. B, 2011, 20(11): 118902.
[7] Adaptive local routing strategy on a scale-free network
Liu Feng(刘锋) Zhao Han(赵寒), Li Ming(李明), Ren Feng-Yuan(任丰原), and Zhu Yan-Bo(朱衍波). Chin. Phys. B, 2010, 19(4): 040513.
[8] Convergence speed of consensus problems over undirected scale-free networks
Sun Wei(孙巍) and Dou Li-Hua(窦丽华). Chin. Phys. B, 2010, 19(12): 120513.
[9] Modelling the spread of sexually transmitted diseases on scale-free networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯). Chin. Phys. B, 2009, 18(6): 2115-2120.
[10] Improving consensual performance of multi-agent systems in weighted scale-free networks
Qi Wei(祁伟), Xu Xin-Jian(许新建), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2009, 18(10): 4217-4221.
[11] Normalized entropy of rank distribution: a novel measure of heterogeneity of complex networks
Wu Jun(吴俊), Tan Yue-Jin(谭跃进), Deng Hong-Zhong(邓宏钟), and Zhu Da-Zhi(朱大智). Chin. Phys. B, 2007, 16(6): 1576-1580.
No Suggested Reading articles found!