Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077101    DOI: 10.1088/1674-1056/ab8d9e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation

Lu Li(栗潞)1, Xiu-Hua Cui(崔秀花)1, Hai-Bin Cao(曹海宾)2, Yi Jiang(姜轶)1, Hai-Ming Duan(段海明)1, Qun Jing(井群)1, Jing Liu(刘静)1, Qian Wang(王倩)1
1 School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China;
2 Department of Physics, College of Sciences, Shihezi University, Shihezi 832000, China
Abstract  The stable geometries, electronic structures, and magnetic behaviors of the ScLin (n=2-13) clusters are investigated by using particle swarm optimization (PSO) and density functional theory (DFT). The results show that these clusters have three-dimensional (3D) structures except ScLi2, and ScLi12, and ScLi13 that possess the cage-like structures. In analyses of the average binding energy, second-order difference of energy, and fragmentation energy, ScLi12 cluster is identified as magnetic superatom. The magnetic moment for each of these clusters owns an oscillating curve of different cluster sizes, and their magnetic moments are further investigated using molecular orbitals and jellium model. Of ScLin (n=2-13) clusters, ScLi12 has the largest spin magnetic moment (3 μB), and molecular orbitals of ScLi12 can be described as 1S21P61Dα5Dβ2. Additionally, Mulliken population and AdNDP bonding analysis are discussed and the results reveal that the Sc atom and Lin atoms make equal contribution to the total magnetic moment, and atomic charges transfer between Sc atoms and Li atoms.
Keywords:  density functional theory      most stable geometry      magnetic moment  
Received:  12 January 2020      Revised:  14 April 2020      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  13.40.Em (Electric and magnetic moments)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant Nos. 2018D01C079 and 2018D01C072).
Corresponding Authors:  Xiu-Hua Cui, Qian Wang     E-mail:  xjcxh0991@xju.edu.cn;wq@xju.edu.cn

Cite this article: 

Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩) Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation 2020 Chin. Phys. B 29 077101

[1] Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A 77 013202
[2] Jin Y Y, Maroulis G, Kuang X Y, Ding L P, Lu C, Wang J J, Lv J, Zhang C Z and Ju M 2015 Phys. Chem. Chem. Phys. 17 13590
[3] Lu S J, Xu X L, Feng G, Xu H G, Zheng and W J 2016 J. Phys. Chem. C 120 25628
[4] Jin Y, Lu S, Hermann A, Kuang X, Zhang C, Lu C, Xu H and Zheng W 2016 Sci. Rep. 6 30116
[5] Shao P, Chen B L, Ding L P, Luo D B, Lu C and Kuang X Y 2017 Phys. Chem. Chem. Phys. 19 25289
[6] Lu S J 2019 Phys. Chem. Chem. Phys. 21 26154
[7] Xiong R, Die D, Xiao L, Xu Y G and Shen X Y 2017 Nanoscale Res. Lett. 12 625
[8] Zhao Y R, Bai T T, Jia L N, Xin W, Hu Y F, Zheng X S and Hou S T 2019 J. Phys. Chem. C 123 28561
[9] Kang D, Sun W, Shi H, Lu C, Kuang X, Chen B, Xia X and Maroulis G 2019 Sci. Rep. 9 14367
[10] Jing Q, Ge G X, Cao H B, Huang X C, Liu X Y and Yan H X 2010 Acta Phys. Chim. Sin. 26 2510
[11] Jing Q, Tian F Y and Wang Y X 2008 J. Chem. Phys. 128 124319
[12] Gong X G and Zheng Q Q 1995 Phys. Rev. B 52 4756
[13] Akola J, Walter M, Whetten R L, Hakkinen H and Gronbeck H 2008 J. Am. Chem. Soc. 130 3756
[14] Das A, Li T, Nobusada K, Zeng Q, Rosi N L and Jin R 2012 J. Am. Chem. Soc. 134 20286
[15] Pederson M R, Reuse F and Khanna S N 1998 Phys. Rev. B 58 5632
[16] Wang J, Bai J, Jellinek J and Zeng X C 2007 J. Am. Chem. Soc. 129 4110
[17] Ge G X, Yan H X, Jing Q, Huang X M, Wan J G and Wang G H 2013 Eur. Phys. J. D 67 116
[18] Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P and Pederson M R 2009 Nat. Chem. 1 310
[19] Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
[20] Medel Juarez V, Reveles J, Khanna S, Chauhan V, Sen P and Castleman A 2011 Proc. Nat. Acad. Sci. USA 108 10062
[21] Reveles J, Sen P, Pradhan K, Roy D and Khanna S 2010 J. Phys. Chem. C 114 10739
[22] Zhang M, Zhang J, Feng X, Zhang H, Zhao L, Luo Y and Cao W 2013 J. Phys. Chem. A 117 13025
[23] Castleman A W and Khanna S N 2009 J. Phys. Chem. C 113 2664
[24] Walter M, Akola J, Acevedo O L, Jadzinsky P, Calero G, Ackerson C, Whetten R, Grönbeck H and Häkkinen H 2008 Proc. Nat. Acad. Sci. USA 105 9157
[25] Pradhan K, Sen P, Reveles J and Khanna S 2008 Phys. Rev. B 77 045408
[26] Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
[27] Wang Y, Lv J, Li Q, Wang H and Ma Y 2019 CALYPSO Method for Structure Prediction and Its Applications to Materials Discovery, in Handbook of Materials Modeling, eds. Andreoni W and Yip S (Cham: Springer)
[28] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[29] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[30] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[34] Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[35] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[36] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[37] Wang Y, Lv J, Li Q, Wang H and Ma Y 2018 Handbook of Materials Modeling: Applications: Current and Emerging Materials, eds. Andreoni W and Yip S (Cham: Springer International Publishing) 1 28
[38] Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
[39] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[40] Lu S, Wang Y, Liu H, Miao M S and Ma Y 2014 Nat. Commun. 5 3666
[41] Dong X, Jalife S, Vasquez-Espinal A, Ravell E, Pan S, Cabellos J L, Liang W Y, Cui Z H and Merino G 2018 Angew. Chem. Int. Ed. Engl. 57 4627
[42] Le Chen B, Sun W G, Kuang X Y, Lu C, Xia X X, Shi H X and Maroulis G 2018 Inorg. Chem. 57 343
[43] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT
[44] Zubarev D Y and Boldyrev A I 2008 Boldyrev. Phys. Chem. Chem. Phys. 10 5207
[45] Tian Lu and Feiwu Chen 2012 J. Comput. Chem. 33 580
[46] Tian L and Chen F W 2011 Acta Chim. Sin. 69 2393 (Chinese)
[47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!