Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078801    DOI: 10.1088/1674-1056/ab99ae
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer

Shixin Hou(侯世欣)1,2,3,4,5, Biao Shi(石标)1,2,3,4,5, Pengyang Wang(王鹏阳)1,2,3,4,5, Yucheng Li(李玉成)1,2,3,4,5, Jie Zhang(张杰)1,2,3,4,5, Peirun Chen(陈沛润)1,2,3,4,5, Bingbing Chen(陈兵兵)1,2,3,4,5, Fuhua Hou(侯福华)1,2,3,4,5, Qian Huang(黄茜)1,2,3,4,5, Yi Ding(丁毅)1,2,3,4,5, Yuelong Li(李跃龙)1,2,3,4,5, Dekun Zhang(张德坤)1,2,3,4,5, Shengzhi Xu(许盛之)1,2,3,4,5, Ying Zhao(赵颖)1,2,3,4,5, Xiaodan Zhang(张晓丹)1,2,3,4,5
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China;
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
3 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
4 Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China;
5 Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
Abstract  Coper thiocyanate (CuSCN) is generally considered as a very hopeful inorganic hole transport material (HTM) in semitransparent perovskite solar cells (ST-PSCs) because of its low parasitic absorption, high inherent stability, and low cost. However, the poor electrical conductivity and low work function of CuSCN lead to the insufficient hole extraction and large open-circuit voltage loss. Here, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is employed to improve conductivity of CuSCN and band alignment at the CuSCN/perovskite (PVK) interface. As a result, the average power conversion efficiency (PCE) of PSCs is boosted by ≈ 11%. In addition, benefiting from the superior transparency of p-type CuSCN HTMs, the prepared bifacial semitransparent n-i-p planar PSCs demonstrate a maximum efficiency of 14.8% and 12.5% by the illumination from the front side and back side, respectively. We believe that this developed CuSCN-based ST-PSCs will promote practical applications in building integrated photovoltaics and tandem solar cells.
Keywords:  perovskite solar cell      CuSCN      inorganic hole transport layer      organic doping      semitransparent solar cell  
Received:  05 February 2020      Revised:  19 May 2020      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), and the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220).
Corresponding Authors:  Pengyang Wang, Xiaodan Zhang     E-mail:  pywang@nankai.edu.cn;xdzhang@nankai.edu.cn

Cite this article: 

Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹) Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer 2020 Chin. Phys. B 29 078801

[1] Cannavale A, Hörantner M, Eperon G E, Snaith H J, Fiorito F, Ayr U and Martellotta F 2017 Appl. Energy 194 94
[2] Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C and Hong K S 2015 Energy Environ. Sci. 8 916
[3] Singh P and Gupta S J J 2019 Int. J. Sci. Tech. Advancements 5 33
[4] Köhnen E, Jošt M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B and Schlatmann R 2019 Sustainable Energy Fuels 3 1995
[5] Hanmandlu C, Chen C Y, Boopathi K M, Lin H W, Lai C S and Chu C W 2017 ACS. Appl. Mater. Interfaces 9 32635
[6] https://www.nrel.gov/
[7] Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y and Zhang X D 2020 Adv. Mater. 32 1905766
[8] Wang P Y, Jiang Q, Zhao Y, Chen Y, Chu Z, Zhang X W, Zhou Y Q and You J B 2018 Sci. Bull. 63 726
[9] Li, R J, Wang P Y, Chen B B, Cui, X H, Ding Y, Li Y L, Zhang D K, Zhao Y and Zhang X D 2019 ACS Energy Lett. 5 79
[10] Shi B, Duan L, Zhao Y, Luo J and Zhang X 2019 Adv. Mater. 32 1806474
[11] Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J and Seok S 2014 J. Am. Chem. Soc. 136 7837
[12] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F and Xu Z 2018 Science 360 1442
[13] Kung P K, Li M H, Lin P Y, Chiang Y H, Chan C R, Guo T F and Chen P 2018 Adv. Mater. Interfaces 5 1800882
[14] Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J, Yan F, O'Regan B C, Amassian A and Anthopoulos T D 2013 Adv. Mater. 25 1504
[15] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[16] Jung J W, Chueh C C and Jen A K Y 2015 Adv. Energy Mater. 5 1500486
[17] Fan L, Li Y, Yao X, Ding Y, Zhao S, Shi B, Wei C, Zhang D, Li B and Wang G 2018 ACS Appl. Energy Mater. 1 1575
[18] Wang H, Dewi H A, Koh T M, Bruno A, Mhaisalkar S G and Mathews N 2020 ACS Appl. Mater. Interfaces 12 484
[19] Jin I S, Lee J H, Noh Y W, Park S H and Jung J W 2019 Inorg. Chem. Front. 6 2158
[20] Wang S, Huang Z, Wang X F, Li Y M, Gunther M, Valenzuela S, Parikh P, Cabreros A, Xiong W and Meng Y S 2018 J. Am. Chem. Soc. 140 16720
[21] Pellaroque A, Noel N K, Habisreutinger S N, Zhang Y D, Barlow S, Marder S and Snaith H J 2017 ACS Energy Lett. 2 2044
[22] Wang Q, Bi C and Huang J 2015 Nano Energy 15 275
[23] Chen W, Wu Y H, Fan J, Djurisic A B, Liu F Z, Tam H W, Ng A, Surya C, Chan W K, Wang D and He Z B 2018 Adv. Energy Mater. 8 1703519
[24] Li M, Wang Z K, Yang Y G, Hu Y, Feng S L, Wang J M, Gao X Y and Liao L S 2016 Adv. Energy Mater. 6 1601156
[25] Zhang Y, Elawad M, Yu Z, Jiang X, Lai J and Sun L 2016 RSC Adv. 6 108888
[26] Senthilkumar N, Park S, Kang H S, Park D W and Choe Y 2011 J. Ind. Eng. Chem. 17 799
[27] Zhu L, Kim E G, Yi Y and Bredas J L 2011 Chem. Mater. 23 5149
[28] Su P Y, Huang L B, Liu J M, Chen Y F, Xiao L M, Kuang D B, Mayor M and Su C Y 2017 J. Mater. Chem. A 5 1913
[29] Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T and Yang Z 2018 Nat. Commun. 9 1625
[30] Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G and Djurišić A B 2018 Adv. Mater. 30 1800515
[31] Gelmetti I, Montcada N F, Pérez-Rodríguez A, Barrena E, Ocal C, García-Benito I, Molina-Ontoria A, Martín N, Vidal-Ferran A and Palomares E 2019 Energy Environ. Sci. 12 1309
[32] Fan L, Ding Y, Luo J, Shi B, Yao X, Wei C, Zhang D, Wang G, Sheng Y and Chen Y 2017 J. Mater. Chem. A 5 7423
[33] Chen P, Bai Y, Wang S, Lyu M, Yun J H and Wang L 2018 Adv. Funct. Mater. 28 1706923
[34] Muthu C, Agarwal S, Vijayan A, Hazra P, Jinesh K B and Nair V C 2016 Adv. Mater. Interfaces 3 1600092
[35] Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y and Zhang X 2018 ACS Sustainable Chem. Eng. 6 16806
[36] Tang Z G, Bessho T, Awai F, Kinoshita T, Maitani M M, Jono R, Murakami T N, Wang H, Kubo T, Uchida Satoshi and Segawa H 2017 Sci. Rep. 7 12183
[37] Li Z, Tinkham J, Schulz P, Yang M, Kim D H, Berry J, Sellinger A and Zhu K 2017 Adv. Energy Mater. 7 1601451
[38] Liu P, Wang W, Liu S M, Yang H G and Shao Z P 2019 Adv. Energy Mater. 9 1803017
[39] Li W, Dong H, Guo X, Li N, Li J, Niu G and Wang L 2014 J. Mater. Chem. A 2 20105
[40] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater. 7 1700722
[41] Zhu S, Yao X, Ren Q, Zheng C, Li S, Tong Y, Shi B, Guo S, Fan L and Ren H 2018 Nano Energy 45 280
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[4] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[7] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[8] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[9] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[10] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[11] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[12] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[13] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[14] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[15] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
No Suggested Reading articles found!