Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067202    DOI: 10.1088/1674-1056/ab84cf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes

Zi-Qun Wang(王子群)1, Fei Tang(唐菲)1, Mi-Mi Dong(董密密)1, Ming-Lang Wang(王明郎)1, Gui-Chao Hu(胡贵超)1, Jian-Cai Leng(冷建材)2, Chuan-Kui Wang(王传奎)1, Guang-Ping Zhang(张广平)1
1 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 Department of Physics, School of Electronic and Information Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
Abstract  The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses. Among the molecularly assembled components, the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge. Here, by using the state-of-the-art nonequilibrium Green's function theory in conjugation with first-principles method, the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes (TM(DBTAA), TM=Fe, Co) sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated. The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA) molecule. By taking advantage of spin degree of freedom of electrons, NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA) and Co(DBTAA) junctions depending on the definitions of input and output signals. This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.
Keywords:  single-molecule junction      molecular logic gate      spin transport      nonequilibrium Green'      s function method  
Received:  01 January 2020      Revised:  19 March 2020      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  85.65.+h (Molecular electronic devices)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874242, 21933002, and 11704230), China Postdoctoral Science Foundation (Grant No. 2017M612321), and the Taishan Scholar Project of Shandong Province of China.
Corresponding Authors:  Chuan-Kui Wang, Guang-Ping Zhang     E-mail:  ckwang@sdnu.edu.cn;zhangguangping@sdnu.edu.cn

Cite this article: 

Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平) Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes 2020 Chin. Phys. B 29 067202

[1] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[2] Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F and Guo X 2019 Nat. Rev. Phys. 1 211
[3] Xiang D, Wang X, Jia C, Lee T and Guo X 2016 Chem. Rev. 116 4318
[4] Guo X 2018 Molecular-Scale Electronics: Current Status and Perspectives (Switzerland: Springer International Publishing)
[5] Xu B and Tao N J 2003 Science 301 1221
[6] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K and Li Z L 2018 Phys. Rev. Appl. 9 054023
[7] Liu R, Wang C K and Li Z L 2016 Sci. Rep. 6 21946
[8] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[9] Shu C H, Liu M X, Zha Z Q, Pan J L, Zhang S Z, Xie Y L, Chen J L, Yuan D W, Qiu X H and Liu P N 2018 Nat. Commun. 9 2322
[10] Yu J X, Hou Z W and Liu X Y 2015 Chin. Phys. B 24 067307
[11] Chen X, Roemer M, Yuan L, Du W, Thompson D, del Barco E and Nijhuis C A 2017 Nat. Nanotechnol. 12 797
[12] Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K and Zhang G P 2018 Physica E 103 397
[13] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K and Li Z L 2019 Phys. Lett. A 383 867
[14] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49
[15] Meng L, Xin N, Hu C et al. 2019 Nat. Commun. 10 1450
[16] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508
[17] He Y, Zhang J and Zhao J 2014 J. Phys. Chem. C 118 18325
[18] Wang Z Q, Wei M Z, Dong M M, Hu G C, Li Z L, Wang C K and Zhang G P 2018 J. Phys. Chem. C 122 17650
[19] Weckbecker D, Coto P and Thoss M 2017 Nano Lett. 17 3341
[20] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L and Wang C K 2019 Physica E 109 1
[21] Fu X X, Zhang L X, Li Z L and Wang C K 2013 Chin. Phys. B 22 028504
[22] Meng F, Hervault Y M, Shao Q, Hu B, Norel L, Rigaut S and Chen X 2014 Nat. Commun. 5 3023
[23] Zhang N, Lo W Y, Jose A, Cai Z, Li L and Yu L 2017 Adv. Mater. 29 1701248
[24] Collier C, Wong E, Belohradský M, Raymo F, Stoddart J, Kuekes P, Williams R and Heath J 1999 Science 285 391
[25] Erbas-Cakmak S, Kolemen S, Sedgwick A C, Gunnlaugsson T, James T D, Yoon J and Akkaya E U 2018 Chem. Soc. Rev. 47 2228
[26] de Silva A P and Uchiyama S 2007 Nat. Nanotechnol. 2 399
[27] Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
[28] Pati R, Senapati L, Ajayan P M and Nayak S K 2003 Phys. Rev. B 68 100407
[29] Hu G C, Zhang Z, Li Y, Ren J F and Wang C K 2016 Chin. Phys. B 25 057308
[30] Wan H, Zhou B, Chen X, Sun C Q and Zhou G 2012 J. Phys. Chem. C 116 2570
[31] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202
[32] Zhang X W, Zhao H, Sang T, Liu X C and Cai T 2013 Chin. Phys. Lett. 30 017201
[33] Qiu Z W and Hou D 2019 Chin. Phys. B 28 088504
[34] Hao R, Zang R, Zhou T, Kan S, Yan S, Liu G, Han G, Yu S and Mei L 2019 Chin. Phys. B 28 037202
[35] Zhao W, Zou D, Yang C L and Sun Z 2017 J. Mater. Chem. C 5 8862
[36] Zeng J and Chen K Q 2018 Phys. Chem. Chem. Phys. 20 3997
[37] Gao X J, Zhao P and Chen G 2018 Org. Electron. 62 277
[38] Whyte A M, Shuku Y, Nichol G S, Matsushita M M, Awaga K and Robertson N 2012 J. Mater. Chem. 22 17967
[39] Khaledi H, Olmstead M M, Mohd Ali H and Thomas N F 2013 Inorg. Chem. 52 1926
[40] Wu Q H, Zhao P and Chen G 2015 Org. Electron. 25 308
[41] Zeng J and Chen K Q 2016 Carbon 104 20
[42] Rong Y and Warner J H 2014 ACS Nano 8 11907
[43] Zeng M, Shen L, Cai Y, Sha Z and Feng Y 2010 Appl. Phys. Lett. 96 042104
[44] Zanolli Z, Onida G and Charlier J C 2010 ACS Nano 4 5174
[45] Wang B, Li J, Yu Y, Wei Y, Wang J and Guo H 2016 Nanoscale 8 3432
[46] Khoo K H, Neaton J B, Son Y W, Cohen M L and Louie S G 2008 Nano Lett. 8 2900
[47] Shen L, Zeng M, Yang S W, Zhang C, Wang X and Feng Y 2010 J. Am. Chem. Soc. 132 11481
[48] Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 J. Phys. Chem. C 117 20951
[49] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[50] Atomistix ToolKit, version 2015 1; QuantumWise A/S, https://quantumwise.com (accessed Dec. 31 2019)
[51] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[1] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[2] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[5] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[6] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[7] Polarization resolved analysis of phonon transport in a multi-terminal system
Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉). Chin. Phys. B, 2019, 28(12): 124401.
[8] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[9] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[10] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[11] Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering
Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani. Chin. Phys. B, 2017, 26(12): 123101.
[12] Spin transport in a chain of polygonal quantum rings with Dresselhaus spin-orbit coupling
Han-Zhao Tang(唐翰昭), Xiao-Teng Yao(要晓腾), Jian-Jun Liu(刘建军). Chin. Phys. B, 2017, 26(11): 117203.
[13] Spin transport properties of a Dresselhaus-polygonal quantum ring
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Shen Man (沈曼), Liu Jian-Jun (刘建军). Chin. Phys. B, 2015, 24(3): 030303.
[14] Thermodynamic properties of Heisenberg magnetic systems
Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2014, 23(3): 037502.
[15] Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain
Hou Hai-Ping (侯海平), Xie Yue-E (谢月娥), Chen Yuan-Ping (陈元平), Ouyang Tao (欧阳滔), Ge Qing-Xia (葛青霞), Zhong Jian-Xin (钟建新). Chin. Phys. B, 2013, 22(8): 087303.
No Suggested Reading articles found!