Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050304    DOI: 10.1088/1674-1056/ab7da3
GENERAL Prev   Next  

Qubit movement-assisted entanglement swapping

Sare Golkar1, Mohammad Kazem Tavassoly1,2, Alireza Nourmandipour3
1 Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd 89195-741, Iran;
2 Photonic Research Group, Engineering Research Center, Yazd University, Yazd 89195-741, Iran;
3 Department of Physics, Faculty of Science, Sirjan University of Technology, Sirjan, Iran
Abstract  We propose a scheme to generate entanglement between two distant qubits (two-level atom) which are separately trapped in their own (in general) non-Markovian dissipative cavities by utilizing entangling swapping, considering the case in which the qubits can move along their cavity axes rather than a static state of motion. We first examine the role of movement of the qubit by studying the entropy evolution for each subsystem. The average entropy over the initial states of the qubit is calculated. Then by performing a Bell state measurement on the fields leaving the cavities, we swap the entanglement between qubit-field in each cavity into qubit-qubit and field-field subsystems. The entangling power is used to measure the average amount of swapped entanglement over all possible pure initial states. Our results are presented in two weak and strong coupling regimes, illustrating the positive role of movement of the qubits on the swapped entanglement. It is revealed that by considering certain conditions for the initial state of qubits, it is possible to achieve a maximally long-leaving stationary entanglement (Bell state) which is entirely independent of the environmental variables as well as the velocity of qubits. This happens when the two qubits have the same velocities.
Keywords:  dissipative systems      quantum entanglement      entanglement swapping  
Received:  23 January 2020      Revised:  19 February 2020      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Corresponding Authors:  Alireza Nourmandipour     E-mail:  anourmandip@sirjantech.ac.ir,anourmandip@gmail.com

Cite this article: 

Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour Qubit movement-assisted entanglement swapping 2020 Chin. Phys. B 29 050304

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Braunstein S L and Mann A 1995 Phys. Rev. A. 51 R1727(R)
[3] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 040302
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Richter T and Vogel W 2007 Phys. Rev. A 76 053835
[6] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
[7] Koike S, Takahashi H, Yonezawa H, Takei N, Braunstein S L, Aoki T and Furusawa A 2006 Phys. Rev. Lett. 96 060504
[8] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[9] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[10] Pazy E, Biolatti E, Calarco T, D Amico I, Zanardi P, Rossi F and Zoller P 2003 Europhys. Lett. 62 175
[11] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[12] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[13] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
[14] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[15] Izmalkov A, Grajcar M, Il'ichev E, Wagner Th, Meyer H G, Yu A, Amin M H S, van den Brink A M and Zagoskin A M 2004 Phys. Rev. Lett. 93 037003
[16] Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903
[17] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[18] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature 404 256
[19] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[20] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[21] Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[22] Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
[23] Polkinghorne R E S and Ralph T C 1999 Phys. Rev. Lett. 83 2095
[24] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[25] Jia X, Su X, Pan Q, Gao J, Xie C and Peng K 2004 Phys. Rev. Lett. 93 250503
[26] Hu C Y and Rarity J G 2011 Phys. Rev. B 83 115303
[27] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[28] de Almeida N G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115508
[29] Ghasemi M, Tavassoly M K and Nourmandipour A 2017 Eur. Phys. J. Plus 132 531
[30] Ning W, Huang X J, Han P R, Li H, Deng H, Yang Z B, Zhong Z R, Xia Y, Xu K, Zheng D and Zheng S B 2019 Phys. Rev. Lett. 123 060502
[31] Zopf M, Keil R, Chen Y, Yang J, Chen D, Ding F and Schmidt O G 2019 Phys. Rev. Lett. 123 160502
[32] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[33] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[34] Nourmandipour A and Tavassoly M K 2015 Eur. Phys. J. Plus 130 148
[35] Mortezapour A, Abedi M, Mahmoudi M and Khajehpour M R H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 085501
[36] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[37] Rafiee M, Nourmandipour A and Mancini S 2016 Phys. Rev. A 94 012310
[38] Rafiee M, Nourmandipour A and Mancini S 2017 Phys. Rev. A 96 012340
[39] Mortezapour A, Naeimi G and Lo Franco R 2018 Opt. Commun. 424 26
[40] Mortezapour A and Lo Franco R 2018 Sci. Rep. 8 14304
[41] Zhang D J, Liu C L and Tong D M 2015 Chin. Phys. Lett. 32 40302
[42] Hu J and Xue Q 2019 Chin. Phys. B 28 070303
[43] Nourmandipour A and Tavassoly M K 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165502
[44] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[45] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[46] Wang X L, Ren Y K and Zeng H S 2019 Chin. Phys. B 28 030301
[47] Wang M J and Xia Y J 2019 Chin. Phys. B 28 060303
[48] Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
[49] Nourmandipour A, Tavassoly M K and Bolorizadeh M A 2016 J. Opt. Soc. Am. B 33 1723
[50] Shankar A, Lakshmibala S and Balakrishnan V 2014 J. Phys. B: At. Mol. Opt. Phys. 47 215505
[51] Schirmer S G and Wang X 2010 Phys. Rev. A 81 062306
[52] Didier N, Guillaud J, Shankar S and Mirrahimi M 2018 Phys. Rev. A 98 012329
[53] Xiao X, Fang M F and Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
[54] Haikka P and Maniscalco S 2010 Phys. Rev. A 81 052103
[55] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[56] Ren Y K, Tang L M and Zeng H S 2016 Quantum Inf. Process. 15 5011
[57] Mortezapour A, Borji M A and Lo Franco R 2017 Laser Phys. Lett. 14 055201
[58] Calajó G and Rabl P 2017 Phys. Rev. A 95 043824
[59] García-Álvarez L, Felicetti S, Rico E, Solano E and Sabín C 2017 Sci. Rep. 7 657
[60] Felicetti S, Sabín C, Fuentes I, Lamata L, Romero G and Solano E 2015 Phys. Rev. B 92 064501
[61] Moustos D and Anastopoulos C 2017 Phys. Rev. D 95 025020
[62] Golkar S, Tavassoly M K and Nourmandipour A 2020 J. Opt. Soc. Am. B 37 400
[63] Wootters K 1998 Phys. Rev. Lett. 80 2245
[64] Zanardi P, Zalka C and Faoro L 2000 Phys. Rev. A 62 030301
[65] Nourmandipour A, Tavassoly M K and Mancini S 2016 Quantum Inf. Comput. 16 969
[66] Asbóth J K, Domokos P and Ritsch H 2004 Phys. Rev. A 70 013414
[67] Katsuki H, Delagnes J C, Hosaka K et al. 2013 Nat. Commun. 4 2801
[68] Park D 2017 arXiv:1703.09341 [quant-ph]
[69] Peters N A, Wei T C and Kwiat P G 2004 Phys. Rev. A 70 052309
[70] Eghbali-Arani M, Yavari H, Shahzamanian M A, Giovannetti V and Barzanjeh S 2015 J. Opt. Soc. Am. B 32 798
[71] Lee S W and Jeong H 2013 arXiv:1304.1214 [quant-ph]
[72] Nourmandipour A and Tavassoly M K 2016 Phys. Rev. A 94 022339
[73] Mortezapour A, Nourmandipour A and Gholipour H 2020 Quantum Inf. Process. 19 136
[74] Briegel H J, Dür, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!