Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040303    DOI: 10.1088/1674-1056/ab773e
GENERAL Prev   Next  

Quantum coherence and correlation dynamics of two-qubit system in spin bath environment

Hao Yang(杨豪)1,2, Li-Guo Qin(秦立国)2,3, Li-Jun Tian(田立君)1, Hong-Yang Ma(马鸿洋)4
1 Department of Physics, Shanghai University, Shanghai 200444, China;
2 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China;
3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
4 School of Science, Qingdao University of Technology, Qingdao 266000, China
Abstract  The quantum entanglement, discord, and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied. The effects of the important physical parameters including the coupling strength of two spins, the interaction strength between the intermediate spin and the spin bath, the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases. The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state. At finite temperature, we find that coherence is more robust than quantum discord, which is better than entanglement, in terms of resisting the influence of environment. Therefore, quantum coherence is more tenacious than quantum correlation as an important resource.
Keywords:  quantum coherence      quantum correlation      spin bath  
Received:  05 November 2019      Revised:  06 January 2020      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 11704238, and 61772295), the Educational Science and Technology Program of Shandong Province, China (Grant No. J18KZ012), and the Natural Science Foundation of Shanghai (Grant No. 16ZR1448400).
Corresponding Authors:  Li-Guo Qin, Li-Jun Tian     E-mail:  lgqin@foxmail.com;tianlijun@shu.edu.cn

Cite this article: 

Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋) Quantum coherence and correlation dynamics of two-qubit system in spin bath environment 2020 Chin. Phys. B 29 040303

[1] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[3] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[4] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[5] Werlang T, Souza S, Fanchini F F and VillasBoas C J 2009 Phys. Rev. A 80 024103
[6] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[7] Cẃiklinśki P, Studzinśki M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403
[8] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[9] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[10] Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P and Scholes G D 2010 Nature 463 644
[11] Huelga S and Plenio M 2013 Contemp. Phys. 54 181
[12] Rebentrost P, Mohseni M and Aspuru-Guzik A 2009 J. Phys. Chem. B 113 9942
[13] Witt B and Mintert F 2013 New J. Phys. 15 093020
[14] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M 2012 Nat. Nanotechnol. 7 663
[15] Karlström O, Linke H, Karlström G and Wacker A 2011 Phys. Rev. B 84 113415
[16] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[17] Yu C S 2017 Phys. Rev. A 95 042337
[18] Guo Y and Goswami S 2017 Phys. Rev. A 95 062340
[19] Bu K, Anand N and Singh U 2018 Phys. Rev. A 97 032342
[20] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[21] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[22] Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324
[23] Ye B L, Li B, Zhao L J, Zhang H J and Fei S M 2017 Sci. China-Phys. Mech. Astron. 60 030311
[24] Malvezzi A L, Karpat G, Cakmak B, Fanchini F F, Debarba T and Vianna R O 2016 Phys. Rev. B 93 184428
[25] Cakmak B, Karpat G and Fanchini F F 2015 Entropy 17 790
[26] Hu Z D, Wei M S, Wang J C, Zhang Y X and He Q L 2018 J. Phys. Soc. Jpn. 87 054002
[27] Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. B 27 090302
[28] Yin S Y, Song J, Xu X X, Zhang Y J and Liu S T 2018 Quantum Inf. Process. 17 296
[29] Semin V, Sinayskiy I and Petruccione F 2012 Phys. Rev. A 86 062114
[30] Hamdouni Y and Petruccione F 2007 Phys. Rev. B 76 174306
[31] Nicolás Q, Al-Qasimi A and Daniel F V 2012 J. Mod. Opt. 59 1322
[32] Yu T and Eberly J H 2009 Science 323 598
[33] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[34] Berrada K, Fanchini F F and Abdel-Khalek S 2012 Phys. Rev. A 85 052315
[35] Ji Y H and Liu Y M 2013 Chin. Phys. B 22 020305
[36] El-Shahat T M and Ismail M Kh 2018 Chin. Phys. B 27 100201
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[4] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[5] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[6] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[9] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[10] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[11] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[12] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[13] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
No Suggested Reading articles found!