Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 023102    DOI: 10.1088/1674-1056/ab610b
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility

Yuan Sun(孙源)1, Bin Xu(徐斌)2, Lin Yi(易林)3
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China;
2 School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
3 Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Searching for two-dimensional (2D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications. Using the first principles calculations and particle swarm optimization (PSO) method, we predict a new 2D stable material (HfN2 monolayer) with the global minimum of 2D space. The HfN2 monolayer possesses direct band gap (~1.46 eV) and it is predicted to have high carrier mobilities (~103 cm2·V-1·s-1) from deformation potential theory. The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions. In addition, the newly predicted HfN2 monolayer possesses good thermal, dynamical, and mechanical stabilities, which are verified by ab initio molecular dynamics simulations, phonon dispersion and elastic constants. These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.
Keywords:  HfN2 monolayer      first principles      electronic structure      carrier mobility  
Received:  05 November 2019      Revised:  08 December 2019      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  73.20.At (Surface states, band structure, electron density of states)  
  68.55.ag (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation (Grant No. U1404108), the Innovative Talents of Universities in Henan Province of China (Grant No. 17HASTIT013), the Basic and Frontier Technology Research Program of Henan Province of China (Grant No. 162300410056), and the Key Scientific Research Projects of Higher Institutions in Henan Province of China (Grant No. 19A140018).
Corresponding Authors:  Yuan Sun, Bin Xu     E-mail:  yuansun44@163.com;hnsqxb@163.com

Cite this article: 

Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林) HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility 2020 Chin. Phys. B 29 023102

[1] Xie M, Zhang S, Cai B, Zhu Z, Zou Y and Zeng H 2016 Nanoscale 8 13407
[2] Wang B, Niu X, Ouyang Y, Zhou Q and Wang J 2018 J. Phys. Chem. Lett. 9 487
[3] Zhang C and Sun Q 2016 J. Phys. Chem. Lett. 7 2664
[4] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[5] Li F, Liu X, Wang Y and Li Y 2016 J. Mater. Chem. C 4 2155
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[8] Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed. Engl. 55 11437
[9] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B and Li H 2019 Adv. Mater. 2019 1903407
[10] Li F, Wang Y, Wu H, Liu Z, Aeberhard U and Li Y 2017 J. Mater. Chem. C 5 11515
[11] Xiao X, Urbankowski P, Hantanasirisakul K, Yang Y, Sasaki S, Yang L, Chen C, Wang H, Miao L, Tolbert S H, Billinge S J L, Abruña H D, May S J and Gogotsi Y 2019 Adv. Funct. Mater. 29 1809001
[12] Wang B, Wu Q, Zhang Y, Ma L and Wang J 2019 ACS Appl. Mater. Inter. 11 33231
[13] Wei Y, Ma Y, Wei W, Li M, Huang B and Dai Y 2018 J. Phys. Chem. C 122 8102
[14] Frey N C, Kumar H, Anasori B, Gogotsi Y and Shenoy V B 2018 ACS Nano 12 6319
[15] Zhao W J and Xu B 2012 Comput. Mater. Sci. 65 372
[16] Zhang C, Liu J, Shen H, Li X Z and Sun Q 2017 Chem. Mater. 29 8588
[17] Gong S, Zhang C, Wang S and Wang Q 2017 J. Phys. Chem. C 121 10258
[18] Wu F, Huang C, Wu H, Lee C, Deng K, Kan E and Jena P 2015 Nano Lett. 15 8277
[19] Li J, Gao G, Min Y and Yao K 2016 Phys. Chem. Chem. Phys. 18 28018
[20] Liu Z, Liu J and Zhao J 2017 Nano Res. 10 1972
[21] Liu J, Liu Z, Song T and Cui X 2017 J. Mater. Chem. C 5 727
[22] Anand S, Thekkepat K and Waghmare U V 2015 Nano Lett. 16 126
[23] Zhou L, Zhuo Z, Kou L, Du A and Tretiak S 2017 Nano Lett. 17 4466
[24] Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
[25] Zhang J, Jiang R, Tuo Y, Yao T and Zhang D 2019 Acta Phys. Pol. A 135 546
[26] Takeyama M B, Sato M, Aoyagi E and Noya A 2014 Jpn. J. Appl. Phys. 53 02BC05
[27] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[28] Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
[29] Wang B, Yuan S, Li Y, Shi L and Wang J 2017 Nanoscale 9 5577
[30] Yin H, Liu C, Zheng G P, Wang Y and Ren F 2019 Appl. Phys. Lett. 114 192903
[31] Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204
[32] Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
[33] Gu T, Luo W and Xiang H 2017 WIREs: Comput. Mol. Sci. 7 e1295
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[37] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[38] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[39] Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[40] MolinaS ánchez A and Wirtz L 2011 Phys. Rev. B 84 155413
[41] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[42] Zhang H and Wang R 2011 Physica B 406 4080
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[12] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!