Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010701    DOI: 10.1088/1674-1056/ab593c
GENERAL Prev   Next  

Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid

Qi Liu(刘琦)1, Yu-Feng Yu(俞钰峰)2, Wen-Sheng Zhao(赵文生)2, Hui Li(李慧)3
1 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
2 School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
3 School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  We propose a low-cost compact microfluidic temperature sensor by virtue of the temperature-dependent permittivity of liquid. The sensor is composed of a coplanar waveguide (CPW) transmission line loaded with three resonators and a microfluidic plate with three channels. The resonant frequency of each resonator relies on the temperature-dependent dielectric property of liquid in corresponding channel, which therefore can be used to extract the temperature. The proposed sensor features a compact size and low cost since it requires only micro fluid volume instead of additional electronic components to produce significant frequency shift with changing temperature. Moreover, it exhibits decent accuracy and stability in a temperature sensing range from 30 ^oC to 95 ^oC. A theoretical analysis of the sensor is provided, followed by the detailed characterization method, and a prototype is designed, manufactured, and measured to verify the theoretical analysis.
Keywords:  microfluidics      sensors      permittivity      dielectric liquid  
Received:  22 August 2019      Revised:  04 November 2019      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.50.-e (Electrical and electronic instruments and components)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19F010007), the National Natural Science Foundation of China (Grants Nos. 61901146 and 61874038), and the Smart City Collaborative Innovation Center of Zhejiang Province, China.
Corresponding Authors:  Hui Li     E-mail:  Hui.li@dlut.edu.cn

Cite this article: 

Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧) Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid 2020 Chin. Phys. B 29 010701

[1] Whitesides G M 2006 Nature 442 368
[2] Cook B S, Cooper J R and Tentzeris M M 2013 IEEE Trans. Microwave Theory Tech. 61 4714
[3] Li L and Zhang C B 2018 Acta Phys. Sin. 67 176801 (in Chinese)
[4] Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M and Hou X 2016 Acta Phys. Sin. 65 178301 (in Chinese)
[5] Gao A R, Liu X, Gao X L, Li T, Gao H M, Zhou P and Wang Y L 2011 Chin. Phys. Lett. 28 084706
[6] Abduljabar A A, Rowe D J, Porch A and Barrow D A 2014 IEEE Trans. Microwave Theor. Tech. 62 679
[7] Branebjerg J, Jensen O S, Laursen N G and Leistiko O 1991 IEEE International Conference on Solid-state Sensors & Actuators, June 24-27 1991, San Francisco, CA, USA, p. 41
[8] Rose D P, Ratterman M E, Griffin D K, Hou L L, Kelley-Loughnane N, Naik R R, Hagen J A, Papautsky I and Heikenfeld J C 2015 IEEE Trans. Biomed. Eng. 62 1457
[9] Chretiennot T, Dubuc D and Grenier K 2013 IEEE Trans. Microwave Theor. Tech. 61 972
[10] Chen T, Dubuc D, Poupot M, Fournié J and Grenier K 2012 IEEE Trans. Microwave Theor. Tech. 60 4171
[11] Sekar V, Torke W J, Palermo S and Entesari K 2012 IEEE Trans. Microwave Theor. Tech. 60 1444
[12] Zhang Y and Tadigadapa S 2004 Biosens. Bioelectron 19 1733
[13] Ernst H, Jachimowicz A and Dynamic G 2001 IEEE Sens. J. 1 361
[14] Fürjes P, Légrádi G, Dücso C, Aszódi A and Bársony I 2004 Sensors and Actuators A (Physical) 115 417
[15] Traille A, Bouaziz S, Pinon S, Pons P and Tentzeris M 2011 IEEE 41st European Microwave Conference (EuMC), October 10-13, 2011, Manchester, UK, p. 45
[16] Rifai A, Debourg E, Bouaziz S, Traille A, Pons P, Aubert H and Tentzeris M 2013 The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, June 16-20, 2013, Barcelona, Spain, p. 1024
[17] Bouaziz S, Chebila F, Traille A, Pons P, Aubert H and Tentzeris M 2012 IEEE Sens., October 28-31, 2012, Taipei, Taiwan, China
[18] Murji R and Deen M J 2002 IEEE Trans. Electron. Dev. 49 187
[19] Leester-Schädel M, Lorenz T, Jürgens F and Richter C 2016 Microsystems for Pharmatechnology (Cham: Springer) pp. 23-57
[20] Hu J, Deng X, Sang S B, Li P W, Li G and Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese)
[21] Salam B, Shan X C and Jun W 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC), November 30-December 3, 2016, Singapore, Singapore, p. 250
[22] Agmon N 1996 J. Phys. Chem. 100 1072
[23] Klein L and Swift C 1977 IEEE Trans. Anten. Propag. 25 104
[24] Drozdov A D and Dusunceli N 2012 Iranian Polym. J. 21 701
[25] Pop T, Iordache D and Jonas A 1997 Microelectron. Eng. 33 377
[26] Lin K C and Aklonis J J 1981 Polym. Eng. Sci. 21 703
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[7] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[8] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
[11] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[12] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[13] The c-axis complex permittivity and electrical impedance in BaFe2As2:Experimental examination on transformation validity
Yongqiang Li(李永强), Xinzhe Du(杜新哲), Dongliang Gong(龚冬良), Qirui Yang(杨綦睿), Wenliang Zhang(张汶良), Tao Xie(谢涛), Bo Feng(冯波), Kai Chen(陈恺), Huiqian Luo(罗会仟), Junming Liu(刘俊明), Jinsong Zhu(朱劲松). Chin. Phys. B, 2019, 28(5): 057702.
[14] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[15] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
No Suggested Reading articles found!