Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128502    DOI: 10.1088/1674-1056/ab4e87
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors

Cheng-Yun Hong(洪成允)1, Gang-Feng Huang(黄刚锋)1, Wen-Wen Yao(要文文)2, Jia-Jun Deng(邓加军)2, Xiao-Long Liu(刘小龙)1,3
1 Renewable Energy School, North China Electric Power University, Beijing 102206, China;
2 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
3 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
Abstract  Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored in the photodetecting area. Considering the fact that the electrical properties such as carrier mobility, work function, and energy band structure of Bi2O2Se are thickness-dependent, the in-plane Bi2O2Se homojunctions consisting of layers with different thicknesses are successfully synthesized by the chemical vapor deposition (CVD) method across the terraces on the mica substrates, where terraces are created in the mica surface layer peeling off process. In this way, effective internal electrical fields are built up along the Bi2O2Se homojunctions, exhibiting diode-like rectification behavior with an on/off ratio of 102, what is more, thus obtained photodetectors possess highly sensitive and ultrafast features, with a maximum photoresponsivity of 2.5 A/W and a lifetime of 4.8 \upmus. Comparing with the Bi2O2Se uniform thin films, the photo-electric conversion efficiency is greatly improved for the in-plane homojunctions.
Keywords:  Bi2O2Se      in-plane homojunction      thickness modulation      photodetectors  
Received:  22 August 2019      Revised:  11 October 2019      Accepted manuscript online: 
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705066), the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2018B004), and the National Key Research and Development Program, China (Grant No. 2016YFA0202401).
Corresponding Authors:  Xiao-Long Liu     E-mail:  xl.liu@ncepu.edu.cn

Cite this article: 

Cheng-Yun Hong(洪成允), Gang-Feng Huang(黄刚锋), Wen-Wen Yao(要文文), Jia-Jun Deng(邓加军), Xiao-Long Liu(刘小龙) Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors 2019 Chin. Phys. B 28 128502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano. Lett. 10 1271
[3] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
[4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotech. 9 372
[5] Xu X, Gabor N M, Alden J S, van der Zande A M and McEuen P L 2010 Nano Lett. 10 562
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 150 136805
[7] Fu X W, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Xu J and Yu D P 2012 Appl. Phys. Lett. 100 223114
[8] Li H, Li X M, Park J H, Tao L, Kim K K, Lee Y H and Xu J B 2019 Nano Energy 57 214
[9] Kufer D and Konstantatos G 2015 Nano Lett. 15 7307
[10] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
[11] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotech. 9 676
[12] Withers F, Pozo-Zamudio O D, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J Geim A K, Tartakovskii A I and Novoselov K S 2015 Nat. Mater. 14 301
[13] Qi Y, Han N, Li Y, Zhang Z, Zhou X, Deng B, Li Q, Liu M, Zhao J, Liu Z and Zhang Y 2017 ACS Nano 11 1807
[14] Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X and Pan A 2018 J. Am. Chem. Soc. 140 11193
[15] Katagiri Y, Nakamura T, Ishii A, Ohata C, Hasegawa M, Katsumoto S, Cusati T, Fortunelli A, Iannaccone G, Fiori G, Roche S and Haruyama J 2016 Nano Lett. 16 3788
[16] Sun Q Q, Li Y J, He J L, Yang W, Zhou P, Lu H L, Ding S J and Zhang W D 2013 Appl. Phys. Lett. 102 093104
[17] Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S and Castellanos-Gomez A 2014 Nano Lett. 14 5846
[18] Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J, Zhou Y, Huang S, Xu H Q, Cui Y, Hwang H Y, Liu Z, Chen Y, Yan B and Peng H 2017 Nat. Nanotechnol. 12 530
[19] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M and Peng H 2017 Nano Lett. 17 3021
[20] Chen C, Wang M, Wu J, Fu H, Yang H, Tian Z, Tu T, Peng H, Sun Y, Xu X, Jiang J, Schroter N B M, Li Y, Pei D, Liu S, Ekahana S A, Yuan H, Xue J, Li G, Jia J, Liu Z, Yan B, Peng H and Chen Y 2018 Sci. Adv. 4 eaat8355
[21] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K and Peng H 2018 Nat. Commun. 9 3311
[22] Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L and He J 2018 Adv. Funct. Mater. 28 1706437
[23] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F, Tay B K, Zhang H, Pennycook S J and Liu Z 2019 Adv. Mater. 31 1804945
[24] Fang H and Hu W 2017 Adv. Sci. 4 1700323
[25] Liu X, Luo X, Nan H, Guo H, Wang P, Zhang L, Zhou M, Yang Z, Shi Y, Hu W, Ni Z, Qiu T, Yu Z, Xu J B and Wang X 2016 Adv. Mat. 28 5200
[26] Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T and Yoo W J 2014 ACS Nano 8 9332
[27] Ye L, Li Hao, Chen Z and Xu J B 2016 ACS Photon. 3 692
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[4] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[5] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[6] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[7] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[8] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[9] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[10] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[11] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[12] Metal halide perovskite photodetectors: Material featuresand device engineering
Ye Wang(王烨), Meng-Lei Gao(高孟磊), Jin-Liang Wu(吴金良), Xing-Wang Zhang(张兴旺). Chin. Phys. B, 2019, 28(1): 018502.
[13] Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Jiayue Han(韩嘉悦), Jun Wang(王军). Chin. Phys. B, 2019, 28(1): 017103.
[14] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[15] Photodetectors based on inorganic halide perovskites: Materials and devices
Ying Li(李营), Zhi-Feng Shi(史志锋), Xin-Jian Li(李新建), Chong-Xin Shan(单崇新). Chin. Phys. B, 2019, 28(1): 017803.
No Suggested Reading articles found!