Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116105    DOI: 10.1088/1674-1056/ab478d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study on order-disorder phase transition of CH3NH3PbCl3

Jing Chang(常静)1, Zhen-Yi Jiang(姜振益)1,2, Qi Song(宋齐)1, Lei Chen(陈磊)1, Yan-Min Lin(林彦明)1, Bo Zhou(周波)1
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Multidisciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
Abstract  Order-disorder phase transitions for CH3NH3PbCl3 are studied with density functional theory. Our calculations show that the disorder is manifested in two aspects in the cubic phase, namely, the disorder of orientation and rotation of organic groups. Organic groups of[CH3] and[NH3] in cubic crystals can easily rotate around its C3 axis. At the same time,[CH3NH3]+ organic groups can also orient to different spatial directions due to the weak interactions between organic group and inorganic frame. Our results show that its possible phase transition path starts from the deviation of organic groups from the crystal c-axis. Its structural transition changes from disordered cubic phase to hydrogen-only disordered tetragonal structure in the process of decreasing symmetry. The disordered high temperature cubic phase can be expressed as a statistical average of substructures we rebuilt. The electrostatic repulsive force between adjacent organic groups triggers out the formation of low temperature phase on cooling.
Keywords:  order-disorder state      phase transition      rotation barrier      dipole interaction  
Received:  18 April 2019      Revised:  23 September 2019      Accepted manuscript online: 
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  64.70.K-  
  64.70.kt (Molecular crystals)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572219, 51872227, 11204239, and 11447030), the Project of Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2015JM1018, 2013JQ1018, 15JK1759, and 15JK1714), and the Science Foundation of Northwest University of China (Grant No. 12NW06).
Corresponding Authors:  Zhen-Yi Jiang     E-mail:  jiangzy@nwu.edu.cn,jiang_zhenyi@hotmail.com

Cite this article: 

Jing Chang(常静), Zhen-Yi Jiang(姜振益), Qi Song(宋齐), Lei Chen(陈磊), Yan-Min Lin(林彦明), Bo Zhou(周波) Theoretical study on order-disorder phase transition of CH3NH3PbCl3 2019 Chin. Phys. B 28 116105

[1] Li L, Zhang Y Y, Xu P, Chen S Y, Xiang H J and Gong X G 2005 Phys. Rev. B 92 075102
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Feng J and Xiao B 2014 J. Phys. Chem. Lett. 5 1278
[4] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[5] Sun S Y, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G C, Sum T C and Lam Y M 2014 Energy Environ. Sci. 7 399
[6] Juarez-Perez E J, Sanchez R S, Badia L, Garcia-Belmonte G, Kang Y S, Mora-Sero I and Bisquert J 2014 J. Phys. Chem. Lett. 5 2390
[7] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
[8] Singh S P and Nagarjuna P 2014 Dalton Trans. 43 5247
[9] Weber D 1978 Z. Naturforsch. B 33 1443
[10] Knop O, Wasylishen R E, White M A and Cameron T S 1990 Can. J. Chem. Eng. 68 412
[11] Yamada K, Mikawa K, Okuda T and Knight K S 2002 J. Chem. Soc. Dalton Trans. 10 2112
[12] Yamada K, Isobe K and Okuda T 1994 Z. Naturforsch. A 49 258
[13] Chiarella F, Zappettini A and Licci F 2008 Phys. Rev. B 77 045129
[14] Maalej A, Abid O Y, Kallel A, Daoud O A, LautiCb A and Romainb F 1997 J. Solid. State Commun. 103 279
[15] Chi L S, Swainsona L, Cranswicka L, her J H, Stephens p and Knop O 2005 J. Solid. State Chem. 178 1376
[16] Geng W, Zhang L, Zhang Y N, La W M and Liu L M 2014 J. Phys. Chem. C 118 19565
[17] Ong K P, Goh T W, Xu Q and Huan A 2015 J. Phys. Chem. A 119 11033
[18] Reynhardt E C and Hoon C F 1983 J. Phys. C:Solid State Phys. 16 6137
[19] Hoon C F and Reynhardt E C 1983 J. Phys. C:Solid State Phys. 16 6129
[20] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Blöchl P E 1994 Phys. Rev. B 50 17953
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Poglitsch A and Weber D 1987 J. Chem. Phys. 87 6373
[26] Bindzus N, Cargnoni F, Iversen B B and Gatti C 2013 J. Phys. Chem. C 117 2308
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!