Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116103    DOI: 10.1088/1674-1056/ab4581
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation

Feng-Lin Deng(邓凤麟)1, Xiang-Sheng Hu(胡湘生)2, Shao-Feng Wang(王少峰)1
1 Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing 400030, China;
2 Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A one-dimensional (1D) self-organized array composed of dislocation and anti-dislocation is analytically investigated in the frame of Peierls theory. From the exact solution of the Peierls equation, it is found that there exists strong neutralizing effect that makes the Burgers vector of each individual dislocation in the equilibrium array smaller than that of an isolated dislocation. This neutralizing effect is not negligible even though dislocations are well separated. For example, when the distance between the dislocation and the anti-dislocation is as large as ten times of the dislocation width, the actual Burgers vector is only about 80% of an isolated dislocation. The neutralizing effect originates physically from the power-law asymptotic behavior that enables two dislocations interfere even though they are well separated.
Keywords:  dislocation array      neutralizing      exact solution  
Received:  18 August 2019      Revised:  11 September 2019      Accepted manuscript online: 
PACS:  61.72.Bb (Theories and models of crystal defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874093).
Corresponding Authors:  Shao-Feng Wang     E-mail:  sfwang@cqu.edu.cn

Cite this article: 

Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰) Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation 2019 Chin. Phys. B 28 116103

[1] Hirth J P and Lothe J 1982 Theory of Dislocations (New York:Wiley)
[2] Kroupa F 1966 J. Phys. Colloques 27 C3
[3] Ma J, Alfé D, Michaelides A and Wang E 2009 Phys. Rev. B 80 033407
[4] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[5] Wang S F, Yao Y and Wang R 2015 Eur. Phys. J. B 88 226
[6] Bennetto J, Nunes R W and Vanderbilt D 1997 Phys. Rev. Lett. 79 245
[7] Miyata M and Fujiwara T 2001 Phys. Rev. B 63 045206
[8] Pizzagalli L and Beauchamp P 2004 Phil. Mag. Lett. 84 729
[9] Lehto N and Öberg N 1998 Phys. Rev. Lett. 80 5568
[10] Peierls R 1940 Proc. Phys. Soc. 52 34
[11] Wang S F, Wu X Z and Wang Y F 2007 Phys. Scr. 76 593
[12] van der Merwe J H 1950 Proc. Phys. Soc. Sec. A 63 616
[13] Yao Y G, Wang T C and Wang C Y 1999 Phys. Rev. B 59 8232
[14] Nabarro F 1947 Proc. Phys. Soc. 59 256
[15] Vítek V and Chrisrian J W 1970 Rep. Prog. Phys. 33 307
[16] Wang S F 2002 Phys. Rev. B 65 094111
[17] Wang S F 2015 Phil. Mag. 95 3768
[18] Lehtinen O, Kurasch S, Krasheninnikov A and Kaiser U 2013 Nat. Commun. 4 2098
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[7] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[8] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[9] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[10] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[11] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[12] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[13] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[14] Improvement of variational approach in an interacting two-fermion system
Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波). Chin. Phys. B, 2015, 24(8): 086701.
[15] Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary
Tan Zhi-Zhong (谭志中). Chin. Phys. B, 2015, 24(2): 020503.
No Suggested Reading articles found!