Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 103102    DOI: 10.1088/1674-1056/ab3da2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study

Kang Yang(杨康)1,2, Liang Yang(杨亮)1,2, Chang-Zhi Ai(艾长智)1,2, Zhao Wang(王赵)3, Shi-Wei Lin(林仕伟)1,2
1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
2 School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
3 School of Science, Hainan University, Haikou 570228, China
Abstract  The elastic properties of anatase nanotubes are investigated by molecular dynamics (MD) simulations. Young's modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Young's modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi (MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Young's modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm-15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition.
Keywords:  molecular dynamics      elastic properties      TiO2 nanotube      chiral angle      radius  
Received:  11 July 2019      Revised:  21 August 2019      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  62.20.D- (Elasticity)  
  81.07.De (Nanotubes)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Key Research and Development Program of Hainan Province, China (Grant No. ZDYF2017098) and the Hainan Provincial Natural Science Foundation, China (Grant No. 519MS025).
Corresponding Authors:  Liang Yang, Shi-Wei Lin     E-mail:  yl5923@hainanu.edu.cn;linsw@hainanu.edu.cn

Cite this article: 

Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟) Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study 2019 Chin. Phys. B 28 103102

[37] Lekhnitsuii S G 1981 Theory of elasticity of an anisotropic elastic body (Moscow: Mir Publishers)
[1] Huang J, Cao Y, Deng Z and Tong H 2011 J. Solid State Chem. 184 712
[38] Swamy V, Gale J D and Dubrovinsky L S 2001 J. Phys. Chem. Solids 62 887
[2] Abdullah N and Kamarudin S K 2015 J. Power Sources 278 109
[39] Zeydabadi-Nejad I, Zolfaghari N, Mosavi-Mashhadi M and Baniassadi M 2019 Comput. Mater. Sci. 158 307
[3] Li H, Liu S, Wang X, Zu G, Li D, Wang J and Zhao J 2019 Sustainable Mater. Technol. 20 e00093
[40] Koparde V N and Cummings P T 2007 J. Phys. Chem. C 111 6920
[4] Chen K, Feng X, Hu R, Li Y, Xie K, Li Y and Gu H 2013 J. Alloys Compd. 554 72
[41] Mashreghi A 2012 Comput. Mater. Sci. 62 60
[5] Li T, Luo S, Luo Y and Yang L 2016 Mater. Lett. 180 130
[42] Shokuhfar T, Arumugam G K, Heiden P A, Yassar R S and Friedrich C 2009 ACS Nano 3 3098
[6] Chen S, Ostrom C and Chen A 2013 Int. J. Hydrogen Energy 38 14002
[43] Crawford G A, Chawla N, Das K, Bose S and Bandyopadhyay A 2007 Acta Biomater. 3 359
[7] Kim J H, Zhu K, Kim J Y and Frank A J 2013 Electrochim. Acta 88 123
[8] Chen K, Xie K, Feng X, Wang S, Hu R, Gu H and Li Y 2012 Int. J. Hydrogen Energy 37 13602
[9] Zhao R, Xu M, Wang J and Chen G 2010 Electrochim. Acta 55 5647
[10] Karaman M, Sarıipek F, Köysüren Ö and YıldıZ H B 2013 Appl. Surf. Sci. 283 993
[11] Jang N S, Kim M S, Kim S H, Lee S K and Kim J M 2014 Sens. Actuators B: Chem. 199 361
[12] Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D, Agilan S and Balasundaraprabhu R 2015 Optik 126 2491
[13] Arruda L B, Santos C M, Orlandi M O, Schreiner W H and Lisboa-Filho P N 2015 Ceram. Int. 41 2884
[14] Sun Y Y, Zong Z M, Li Z K and Wei X Y 2018 Ceram. Int. 44 3501
[15] Liu Z, Liu C, Ya J and Lei E 2011 Renewable Energy 36 1177
[16] Hosseini M, Momeni M M and Faraji M 2011 J. Mol. Catal. A: Chem. 335 199
[17] He H, Xiao P, Zhou M, Zhang Y, Lou Q and Dong X 2012 Int. J. Hydrogen Energy 37 4967
[18] Bjursten L M, Rasmusson L, Oh S, Smith G C, Brammer K S and Jin S 2010 J. Biomed. Mater. Res. Part. A 92A 1218
[19] El Saeed A M, Fattah M A E and Dardir M M 2015 Prog. Org. Coat. 78 83
[20] Zaeri M M, Ziaei-Rad S and Shahidi A R 2015 Procedia Mater. Sci. 11 666
[21] Aghadavoudi F, Golestanian H and Tadi Beni Y 2018 Polym. Compos. 39 4513
[22] Lu J P 1997 Phys. Rev. Lett. 79 1297
[23] Yao H, Ouyang L and Ching W Y 2007 J. Am. Ceram. Soc. 90 3194
[24] Iuga M, Steinle-Neumann G and Meinhardt J 2007 Eur. Phys. J. B 58 127
[25] Isaak D G, Carnes J D, Anderson O L, Cynn H and Hake E 1998 Phys. Chem. Miner. 26 31
[26] Wang Y J, C J, T A N L N and C X R 2007 Chin. Phys. Lett. 24 2642
[27] Hearmon R F S 1984 Elastic Constants Crystals Other Anisotropic Materials (Landolt-Bornstein Tables, Ⅲ/18) p. 1154
[28] Wang Y Q, Hu G Q, Duan X F, Sun H L and Xue Q K 2002 Chem. Phys. Lett. 365 427
[29] Evarestov R A, Bandura A V, Losev M V, Piskunov S and Zhukovskii Y F 2010 Physica E: Low-dimensional Syst. Nanostruct. 43 266
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Matsui M and Akaogi M 1991 MoSim 6 239
[32] Chen X, Zhang J and Zhao Y Q 2017 Appl. Surf. Sci. 404 409
[33] Nosé S 1984 Mol. Phys. 52 255
[34] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[35] Sadd M H 2009 Elasticity: theory, applications, and numerics (New York: Academic Press)
[36] Lubarda V and Chen M 2008 J. Mech. Mater. Struct. 3 153
[37] Lekhnitsuii S G 1981 Theory of elasticity of an anisotropic elastic body (Moscow: Mir Publishers)
[38] Swamy V, Gale J D and Dubrovinsky L S 2001 J. Phys. Chem. Solids 62 887
[39] Zeydabadi-Nejad I, Zolfaghari N, Mosavi-Mashhadi M and Baniassadi M 2019 Comput. Mater. Sci. 158 307
[40] Koparde V N and Cummings P T 2007 J. Phys. Chem. C 111 6920
[41] Mashreghi A 2012 Comput. Mater. Sci. 62 60
[42] Shokuhfar T, Arumugam G K, Heiden P A, Yassar R S and Friedrich C 2009 ACS Nano 3 3098
[43] Crawford G A, Chawla N, Das K, Bose S and Bandyopadhyay A 2007 Acta Biomater. 3 359
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
No Suggested Reading articles found!