Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 100401    DOI: 10.1088/1674-1056/ab3a8c
GENERAL Prev   Next  

Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise

Jie Luo(罗杰)1, Jun Ke(柯俊)1, Yi-Chuan Liu(柳一川)1, Xiang-Li Zhang(张祥莉)1, Wei-Ming Yin(殷蔚明)1, Cheng-Gang Shao(邵成刚)2
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;
2 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology(HUST), Wuhan 430074, China
Abstract  

In the torsion pendulum experiments, the thermal noise sets the most fundamental limit to the accurate estimation of the amplitude of the signal with known frequency. The variance of the conventional method can meet the limit only when the measurement time is much longer than the relaxation time of the pendulum. By using the maximum likelihood estimation and the equation-of-motion filter operator, we propose an optimal (minimum variance, unbiased) amplitude estimation method without limitation of the measurement time, where thermal fluctuation is the leading noise. While processing the experimental data tests of the Newtonian gravitational inverse square law, the variance of our method has been improved than before and the measurement time of determining the amplitude with this method has been reduced about half than before for the same uncertainty. These results are significant for the torsion experiment when the measurement time is limited.

Keywords:  optimal amplitude estimation      thermal noise      torsion pendulum      measurement time  
Received:  14 May 2019      Revised:  21 July 2019      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11575160).

Corresponding Authors:  Cheng-Gang Shao     E-mail:  cgshao@mail.hust.edu.cn

Cite this article: 

Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚) Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise 2019 Chin. Phys. B 28 100401

[1] Saulson P R 1990 Phys. Rev. D 42 2437
[2] Yang S Q, Zhan B F, Wang Q L, Shao C G, Tu L C, Tan W H and Luo J 2012 Phys. Rev. Lett. 108 081101
[3] Tan W H, Yang S Q, Shao C G, Li J, Du A B, Zhan B F, Wang Q L, Luo P S, Tu L C and Luo J 2016 Phys. Rev. Lett. 116 131101
[4] Zhu L, Liu Q, Zhao H H, Gong Q L, Yang S Q, Luo P S, Shao C G, Wang Q L, Tu L C and Luo J 2018 Phys. Rev. Lett. 121 261101
[5] Shao C G, Chen Y F, Tan Y J, Yang S Q, Luo J, Tobar M E, Long J C, Weisman E and Kostelecký V A 2019 Phys. Rev. Lett. 122 011102
[6] Wang D H, Luo J and Luo K 2006 Rev. Sci. Instrum. 77 104501
[7] Chen Y T and Cook A H 1990 Class. Quantum Grav. 7 1225
[8] Luo J, Shao C G, Tian Y and Wang D H 2013 Phys. Lett. A 377 1397
[9] Uhlenbeck G E and Goudamit S 1929 Phys. Rev. 34 145
[10] Balazs N L 1958 Phys. Rev. 109 232
[11] Ritter R C, Winkler L I and Gillies G T 1999 Meas. Sci. Technol. 10 499
[12] Braginsky V B and Manukin A B 1978 Am. J. Phys. 46 2
[13] Nyquist H 1928 Phys. Rev. 32 110
[14] Luo J and Wang D H 2009 Class. Quantum Grav. 26 195005
[15] Callen H B and Welton T A 1951 Phys. Rev. 83 34
[16] Goldblum C G and Ritter R C 1988 Rev. Sci. Instrum. 59 778
[17] Tian Y L and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[18] Shao C G, Luan E J and Luo J 2003 Rev. Sci. Instrum. 74 2849
[19] Michael W M, Jason H S and Paul E B 2005 Rev. Sci. Instrum. 76 085106
[20] Ritter R C and Gillies G T 1985 Phys. Rev. A 31 995
[21] Zhan W Z, Luo J, Shao C G, Zheng D, Yin W M and Wang D H 2017 Chin. Phys. B 26 090401
[22] Wu W H, Tian Y, Xue C, Luo J and Shao C G 2017 Chin. Phys. B 26 040401
[23] Lamoreaux S K and Buttler W T 2005 Phys. Rev. E 71 036109
[24] Hoyle C D, Kapner D J, Heckel B R, Adelberger E G, Gundlach J H, Schmidt U and Swanson H E 2004 Phys. Rev. D 70 042004
[1] A composite micromotor driven by self-thermophoresis and Brownian rectification
Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2021, 30(11): 114702.
[2] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[3] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[4] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[5] Influence of the colored noise on determining the period of a torsion pendulum
Jie Luo(罗 杰), Wen-Ze Zhan(占文泽), Wei-Huang Wu(巫伟皇), Cheng-Gang Shao(邵成刚), Dian-Hong Wang(王典洪). Chin. Phys. B, 2016, 25(8): 080401.
[6] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪). Chin. Phys. B, 2015, 24(3): 030401.
No Suggested Reading articles found!