Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090701    DOI: 10.1088/1674-1056/ab38a8
GENERAL Prev   Next  

Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks

Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓)
School of Automation, Shenyang Aerospace University, Shenyang 110136, China
Abstract  

We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism. A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network. The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme. A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality. Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies. Finally, a simulation example demonstrates the feasibility of the theory in this paper.

Keywords:  hybrid-triggered consensus      multi-agent system      time-delay and cyber-attacks      switching topologies  
Received:  07 April 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
  89.75.-k (Complex systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61074159 and 61703286).

Corresponding Authors:  Li-Yuan Yin     E-mail:  2992868494@qq.com

Cite this article: 

Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓) Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks 2019 Chin. Phys. B 28 090701

[42] Mozelli L A, Palhares R M and Mendes E M A M 2010 IET Control Theory A 4 2813
[1] Arbanas B, Ivanovic A, Car M, Orsag M, Petrovic T and Bogdan S 2018 Auton Robot 42 1601
[43] Souza F O, Palhares R M and Barbosa K A 2008 IET Control Theory A 2 1033
[2] Beard R W, Mclain T W, Nelson D B, Kingston D and Johansonet D 2006 Proceedings of the IEEE 94 1306
[44] Michael N, Schwager M, Kumar V and Rus D 2014 Cardiologia 39 631
[3] Wang J H, Xu Y L, Zhang J and Yang D D 2018 Chin. Phys. B 27 040504
[45] Schwager M, Michael N, Kumar V and Rus D 2011 IEEE International Conference on Robotics & Automation, May 9-13, 2011, Shanghai, China, p. 3855
[4] Luo X Y, Han N N and Guan X P 2010 Chin. Phys. B 19 100202
[46] Chen P, Qing L H, and Dong Y 2013 IEEE T. Fuzzy. Syst. 21 164
[5] Cao J F, Ling Z H, Yuan Y F and Gao C 2014 Chin. Phys. B 23 070509
[47] Tian E, Yue D and Gu Z 2010 Fuzzy Set Syst. 161 2731
[6] Bin B W, Zhong J M and Yi W 2017 Acta Phys. Sin. 66 060201(in Chinese)
[7] Yu Z Y, Jiang H J, Hu C and Yu J 2017 IEEE T. Cybernetics 47 1892
[8] Miao G Y, Xu S Y, Zhang B Y and Zou Y 2014 IMA J. Math. Control. I 31 151
[9] Wu X T, Tang Y, Cao J D and Zhang W B 2016 IEEE T. Cybernetics 46 1817
[10] Li Y L, Li H T, Ding X Y and Zhao G D 2019 IEEE T. Cybernetics 49 3203
[11] Liu C J and Liu G P 2018 J. Franklin I 355 4198
[12] Heitor J S, Carlos R P dos S, Fernando O S, Luciano C A P, Maurício D O and Reinaldo M P 2016 IEEE T. Ind. Electron. 63 1258
[13] Fang M, Zhou C C and Huang X 2019 Chin. Phys. B 28 010703
[14] Liu X Y, Sun J, Dou L H and Chen J 2017 J. Syst. Sci. Complex 30 30
[15] Cheng T H, Kan Z, Justin R K, John M S and Warren E D 2017 IEEE T. Automat. Contr. 62 5365
[16] Liu J L, Zha L J, Cao J and Fei S M 2016 IET Control Theory A 10 2279
[17] Liu J L, Xia J L, Cao J and Tian E G 2018 Neurocomputing 291 35
[18] Zhang Y, Yang Y and Fan Y 2016 IEEE Control Conference, July 27-29, 2016, Chengdu, China, p. 7634
[19] Liu J L, Xia J L, Tian E G and Fei S M 2018 Appl. Math. Comput. 320 158
[20] Zha L J, Tian E G, Xie X P, Gu Z and Cao J 2018 Inform. Sciences 457-458 141
[21] Liu J L, Wei L L, Xie X P, Tian E G and Fei S M 2018 IEEE T. Fuzzy Syst. 26 3820
[22] Huang K X, Zhou C J, Tian Y C, Yang S G and Qin Y Q 2018 IEEE T. Ind. Electron. 65 8153
[23] Xiong J L, Lam J, Gao H J and Daniel W C H 2005 Automatica 41 897
[24] Xiong J L and James L 2009 Int. J. Syst. Sci. 40 255
[25] Zhang L X, Boukas E K and Lam J 2008 IEEE T. Automat. Contr. 53 2458
[26] Zhang L X and Boukas E K 2009 Automatica 45 463
[27] Rohatgi V K 1983 Technometrics 25 116
[28] Yue D, Han Q L and Lam J 2005 Pergamon Press, Inc. pp. 999-1007
[29] Tian E, Yue D and Peng C 2010 IET Control Theory A 4 1478
[30] Yan H C, Xu X L, Zhang H and Yang F W 2017 J. Franklin I 354 3760
[31] Yue D, Tian E G and Han Q L 2013 IEEE T. Automat. Cont.r 58 475
[32] Liu J L, Zha L J, Cao J and Fei S M 2016 IET Control Theory A 10 2279
[33] Miao G Y, Xu S Y, Zhang B Y and Zou Y 2014 IMA J. Math. Control I 31 151
[34] Liu J L, Wei L L, Tian E G, Fei S M and Cao J 2017 J. Franklin I 354 8490
[35] Liu J L, Xia J L, Tian E G and Fei S M 2018 Appl. Math. Comput. 320 158
[36] Nian X H, Gui W H and Liu Y M 2006 Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China, p. 1422
[37] Seuret A and Frédéric G 2014 Automatica 50 300
[38] Xiong J and Lam J 2009 Int. J. Syst. Sci. 40 255
[39] Wang Y Y, Xie L H and De S C E 1992 Robust control of a class of uncertain nonlinear systems (New York:Elsevier Science Publishers B. V.) pp. 139-149
[40] Savino H J, Souza F O and Pimenta L C A 2015 Int. J. Syst. Sci. 47 2475
[41] Sun Y G and Wang L 2009 IEEE T. Automat. Contr. 54 1607
[42] Mozelli L A, Palhares R M and Mendes E M A M 2010 IET Control Theory A 4 2813
[43] Souza F O, Palhares R M and Barbosa K A 2008 IET Control Theory A 2 1033
[44] Michael N, Schwager M, Kumar V and Rus D 2014 Cardiologia 39 631
[45] Schwager M, Michael N, Kumar V and Rus D 2011 IEEE International Conference on Robotics & Automation, May 9-13, 2011, Shanghai, China, p. 3855
[46] Chen P, Qing L H, and Dong Y 2013 IEEE T. Fuzzy. Syst. 21 164
[47] Tian E, Yue D and Gu Z 2010 Fuzzy Set Syst. 161 2731
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[5] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[6] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[7] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[8] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[9] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[10] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[11] Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋). Chin. Phys. B, 2018, 27(2): 028901.
[12] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[13] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[14] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[15] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
No Suggested Reading articles found!