Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 097501    DOI: 10.1088/1674-1056/ab37f7
SPECIAL TOPIC—110th Anniversary of Lanzhou University Prev   Next  

Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces

Yaojin Li(李耀进)1,2, Vladimir Koval3, Chenglong Jia(贾成龙)1
1 Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Electronic Materials Research Laboratory International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Materials Research, Slovak Academy of Sciences Watsonova 47, 04001 Kosice, Slovakia
Abstract  

The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectric-associated vector potential is theoretically investigated for complex-oxide composite structures. Large mismatch in the electrical permittivity of the ferroelectric and ferromagnetic materials gives rise to giant anisotropic magnetoelectric effects at their interface. Our study reveals a strong linear dynamic magnetoelectric coupling which genuinely results in electric control of magnetic susceptibility. The constitutive conditions for negative refractive index of multiferroic composites are determined by the analysis of light propagation.

Keywords:  interfacial magnetoelectric effect      ferromagnetic insulator      magnetic susceptibility      refractive index  
Received:  07 June 2019      Revised:  19 July 2019      Accepted manuscript online: 
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474138 and 11834005), the Fund from the Ministry of Science and Technology of China (Grant No. CN-SK-8-4), the Science Foundation from the Slovak Academy of Sciences (Grant No. 2/0059/17), and the Science Fund from the Slovak Research and Development Agency (Grant No. APVV SK-CN-2017-0004).

Corresponding Authors:  Chenglong Jia     E-mail:  cljia@lzu.edu.cn

Cite this article: 

Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙) Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces 2019 Chin. Phys. B 28 097501

[41] Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
[42] de Gennes P G 1960 Phys. Rev. 118 141
[1] Prellier W, Singh M P and Murugavel P 2005 J. Phys.:Condens. Matter 17 R803
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[43] Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin:Springer-Verlag) pp. 25-28
[44] Graf M and Vogl P 1995 Phys. Rev. B 51 4940
[3] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[45] Ismail-Beigi S, Chang E K and Louie S G 2001 Phys. Rev. Lett. 87 087402
[4] Spaldin N A, Cheong S W and Ramesh R 2010 Phys. Today 10 38
[46] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[5] Vaz C A F 2012 J. Phys.:Condens. Matter 24 333201
[47] Betouras J J, Giovannetti G and Van den Brink J 2007 Phys. Rev. Lett. 98 257602
[6] Nagaosa N and Tokura Y 2012 Phys. Scr. T146 014020
[48] Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2011 Europhys. Lett. 95 37005
[7] Nozaki T, Shiota Y, Miwa S, Murakami S, Bonell F, Ishibashi S, Kubota H, Yakushiji K, Saruya T, Fukushima A, Yuasa S, Shinjo T and Suzuki Y 2012 Nat. Phys. 8 491
[49] Jia C L, Wang F L, Jiang C J, Berakder J and Xue D S 2015 Sci. Rep. 5 11111
[8] Parkin S and Yang S H 2015 Nat. Nanotechnol. 10 209
[50] Jiang C J, Jia C L, Wang F L, Zhou C and Xue D S 2018 Phys. Rev. B 97 060408
[9] Kimura T 2012 Ann. Rev. Condens. Matter Phys. 3 93
[51] Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H and Barbier A 2013 Phys. Rev. B 88 121409
[10] Koval V, Skorvanek I, Durisin J, Viola G, Kovalcikova A, Svec P, Saksl K and Yan H 2017 J. Mater. Chem. C 5 2669
[52] Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2013 Europhys. Lett. 95 37005
[11] Vaz C A F, Hoffman J, Ahn C H and Ramesh R 2010 Adv. Mater. 22 2900
[12] Jia C L, Onoda S, Nagaosa N and Han J H 2007 Phys. Rev. B 76 144424
[13] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[14] Burton J D and Tsymbal E Y 2012 Phil. Trans. R. Soc. A 37 4840
[15] Jia C L, Wei T L, Jiang C J, Xue D S, Sukhov A and Berakdar J 2014 Phys. Rev. B 90 054423
[16] Li Y J, Chen M, Berakdar J and Jia C L 2017 Phys. Rev. B 96 054444
[17] Zhou C, Shen L, Liu M, Gao C X, Jia C L, Jiang C J and Xue D S 2018 Adv. Funct. Mater. 28 1707027
[18] Cui B, Song C, Wang G, Yan Y, Peng J, Miao J, Mao H, Li F, Chen C, Zeng F and Pan F 2014 Adv. Funct. Mater. 24 723
[19] Cui B, Song C, Gehring G A, Li F, Wang G, Chen C, Peng J, Mao H, Zeng F and Pan F 2015 Adv. Funct. Mater. 25 864
[20] Cui B, Song C, Mao H, Yan Y, Li F, Gao S, Peng J, Zeng F and Pan F 2016 Adv. Mater. 26 753
[21] Duan C G, Jaswal S S and Tsymbal E Y 2007 Phys. Rev. Lett. 318 1114
[22] Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M and Keimer B 2006 Science 97 047201
[23] Benckiser E, Haverkort M W, Brück S, Goering E, Macke S, Frañó A, Yang X, Andersen O K, Cristiani G, Habermeier H U, Boris A V, Zegkinoglou I, Wochner P, Kim H J, Hinkov V and Keimer B 2011 Nat. Mater. 10 189
[24] Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F and Pan F 2015 Adv. Funct. Mater. 27 6651
[25] Nagai T, Nagao M, Kurashima K, Asaka T, Zhang W and Kimoto K 2012 Appl. Phys. Lett. 101 162401
[26] Moreo A, Yunoki S and Dagotto E 1999 Science 283 2034
[27] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[28] Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, Van der Marel D, Ahn C H and Triscone J M 2009 Adv. Mater. 21 3470
[29] Eerenstein W, Wiora M, Prieto J L, Scott J F and Mathur N D 2007 Nat. Mater. 6 348
[30] Thiele C, Dörr K, Bilani O, Rödel J and Schultz L 2007 Phys. Rev. B 75 054408
[31] Vaz C A F, Hoffman J, Segal Y, Reiner J W, Grober R D, Zhang Z, Ahn C H and Walker F J 2010 Phys. Rev. Lett. 104 127202
[32] Vaz C A F, Segal Y, Hoffman J, Grober R D, Walker F J and Ahn C H 2010 Appl. Phys. Lett. 75 054408
[33] Ivanshin V A, Deisenhofer J, Krug von Nidda H A, Loidl A, Mukhin A A, Balbashov A M and Eremin M V 2000 Phys. Rev. B 97 042506
[34] Ivannikov D, Biberacher M, Krug von Nidda H A, Pimenov A, Loidl A, Mukhin A A and Balbashov A M 2002 Phys. Rev. B 65 214422
[35] Yunoki S, Moreo A and Dagotto E 1998 Phys. Rev. Lett. 81 5612
[36] Kubo K, Edwards D M, Green A C M, Momoi T, and Sakamoto H 1998 arXiv:cond-mat/9811286[cond-mat.str-el]
[37] Motome Y, Nakano H and Imada M 1999 Mater. Sci. Eng. B 63 58
[38] Mostovoy M, Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 047204
[39] Jackson J D 1998 Classical Electrodynamics, 3nd edn. (New York:Wiley) p. 18
[40] Zener C 1951 Phys. Rev. 82 403
[41] Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
[42] de Gennes P G 1960 Phys. Rev. 118 141
[43] Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin:Springer-Verlag) pp. 25-28
[44] Graf M and Vogl P 1995 Phys. Rev. B 51 4940
[45] Ismail-Beigi S, Chang E K and Louie S G 2001 Phys. Rev. Lett. 87 087402
[46] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[47] Betouras J J, Giovannetti G and Van den Brink J 2007 Phys. Rev. Lett. 98 257602
[48] Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2011 Europhys. Lett. 95 37005
[49] Jia C L, Wang F L, Jiang C J, Berakder J and Xue D S 2015 Sci. Rep. 5 11111
[50] Jiang C J, Jia C L, Wang F L, Zhou C and Xue D S 2018 Phys. Rev. B 97 060408
[51] Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H and Barbier A 2013 Phys. Rev. B 88 121409
[52] Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2013 Europhys. Lett. 95 37005
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[9] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[10] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[11] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[12] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[13] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[14] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[15] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
No Suggested Reading articles found!