Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 096401    DOI: 10.1088/1674-1056/ab327d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids

Li-Na Wang(王丽娜)1,2, Xing-Yu Zhao(赵兴宇)1,2, Heng-Wei Zhou(周恒为)2, Li Zhang(张丽)1,2, Yi-Neng Huang(黄以能)1,2
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
Abstract  

The melting of crystals is one of the most common and general phase transition phenomena. However, the mechanism of crystal melting is not well understood, and more experimental measurements and explorations are still needed. The mechanical spectra of propylene carbonate and 1,3-propanediol during the crystal melting processes are measured by the reed vibration mechanical spectroscopy for liquids (RMS-L) for the first time. The experimental results show that as the temperature increases, the real part of the complex Young modulus first decreases slowly, and then quickly drops to zero; meanwhile, its imaginary part increases slowly at first, then goes up and drops quickly to zero, showing a peak of internal friction. Preliminary analyses indicate that both the real and imaginary parts can present some characteristics of the melting process, such as the transition from the disconnected liquid regions to the connected liquid regions, that from the connected crystal regions to the disconnected crystal regions, and so on. In addition, the results show that the melting rate per unit volume of crystalline phase versus temperature satisfies the Arrhenius relation at the initial stage of melting, and deviates from this relation as the temperature increases to a certain value. Therefore, the RMS-L will provide an effective supplement for the further study of melting.

Keywords:  crystal melting      mechanical spectroscopy      complex Young modulus      percolation  
Received:  06 March 2019      Revised:  25 June 2019      Accepted manuscript online: 
PACS:  64.70.dj (Melting of specific substances)  
  62.90.+k (Other topics in mechanical and acoustical properties of condensed matter)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  64.70.-p (Specific phase transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11664042).

Corresponding Authors:  Heng-Wei Zhou, Yi-Neng Huang     E-mail:  zhw33221@163.com;ynhuang@nju.edu.cn

Cite this article: 

Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能) Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids 2019 Chin. Phys. B 28 096401

[1] Kashan J S, Jha A, Thamir A D and Al-Haidary J T 2018 J. King Saud Univ. Eng. Sci. 30 286
[2] Li B, Wang F, Zhou D, Peng Y, Ni R and Han Y L 2016 Nature 531 485
[3] Thomson E S, Hansen-Goos H, Wettlaufer J S and Wilen L A 2013 J. Chem. Phys. 138 124707
[4] Wang Z R, Wang F, Peng Y, Zheng Z Y and Han Y L 2012 Science 338 87
[5] Mishin Y, Boettinger W J, Warren J A and Mcfadden G B 2009 Acta Mater. 57 3771
[6] Mei Q S and Lu K 2007 Prog. Mater. Sci. 52 1175
[7] Alsayed A M, Islam M F, Zhang J, Collings P J and Yodh A G 2005 Science 309 1207
[8] Dahmen U, Hagége S, Faudot F, Radetic T and Johnson E 2004 Phil. Mag. 84 2651
[9] Cahn R W 2001 Nature 413 582
[10] Dash J G 1999 Rev. Mod. Phys. 71 1737
[11] Lindemann F A 1910 Z. Phys. 11 609
[12] Li Y M and Somorjai G A 2007 J. Phys. Chem. C 111 9631
[13] Ciccotti G, Guillopé M and Pontikis V 1983 Phys. Rev. B 27 5576
[14] Löwen H 1994 Phys. Rep. 237 249
[15] Pluis B, Frenkel D and van der Veen J F 1990 Surf. Sci. 239 282
[16] Burakovsky L, Preston D L and Silbar R R 2000 Phys. Rev. B 61 15011
[17] Curtin W A 1989 Phys. Rev. B 39 6775
[18] Lipowsky R 1986 Phys. Rev. Lett. 57 2876
[19] Kristensen W D, Kristensen J K and Præstgaard E 1984 Phys. Scr. 30 421
[20] Chui S T 1983 Phys. Rev. B 28 178
[21] Edwards S F and Warner M 2006 Philos. Mag. A 40 257
[22] Fisher D S, Halperin B I and Morf R 1979 Phys. Rev. B 20 4692
[23] Yang L X 2016 Chin. Phys. B 25 076201
[24] Zhou H W, Wang L N, Zhang L L and Huang Y N 2013 Int. J. Mod. Phys. B 27 1350080
[25] Zhang J L, Wu W H, Zhou H W, Guo X Z and Huang Y N 2008 Appl. Phys. Lett. 92 131906
[26] Wu W H, Zhang J L, Zhou H W, Huang Y N, Zhang L and Ying X N 2008 Appl. Phys. Lett. 92 11918
[27] Zhou H W, Zhang J L, Huang Y N, Ying X N, Zhang L, Wu W H and Shen Y F 2007 Acta Phys. Sin. 56 6547(in Chinese)
[28] Zhou H W, Liu J, Lei T and Huang Y N 2013 Acta Phys. Sin. 62 76203(in Chinese)
[29] Ding M S 2004 J. Chem. Eng. Data 49 276
[30] Jabrane S, Létoffé J M and Claudy P 1998 Thermochim. Acta 311 121
[31] Shante V K S and Kirkpatrick S 1971 Adv. Phys. 20 325
[32] Holcomb D F and Rehr J J 1969 Phys. Rev. 183 773
[33] Larson R G, Scriven L E and Davis H T 1977 Nature 268 409
[34] Huang Y N, Li X, Ding Y, Wang Y N, Shen H M, Zhang Z F, Fang C S, Zhuo S H and Fung P C W 1997 Phys. Rev. B 55 16159
[35] Huang Y N, Wang Y N and Shen H M 1992 Phys. Rev. B 46 3290
[1] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[2] The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice
Yuming Yang(杨宇明), Baohua Teng(滕保华). Chin. Phys. B, 2018, 27(10): 106401.
[3] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[4] Random telegraph noise on the threshold voltage of multi-level flash memory
Yiming Liao(廖轶明), Xiaoli Ji(纪小丽), Yue Xu(徐跃), Chengxu Zhang(张城绪), Qiang Guo(郭强), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(1): 018502.
[5] Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation
Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087306.
[6] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
[7] Electrical and optical properties of indium tin oxide/epoxy composite film
Guo Xia (郭霞), Guo Chun-Wei (郭春威), Chen Yu (陈宇), Su Zhi-Ping (苏治平). Chin. Phys. B, 2014, 23(7): 076403.
[8] Percolation on networks with dependence links
Li Ming (李明), Wang Bing-Hong (汪秉宏). Chin. Phys. B, 2014, 23(7): 076402.
[9] Characteristics of phase transitions via intervention in random networks
Jia Xiao (贾啸), Hong Jin-Song (洪劲松), Yang Hong-Chun (杨宏春), Yang Chun (杨春), Shi Xiao-Hong (史晓红), Hu Jian-Quan (胡建全). Chin. Phys. B, 2014, 23(7): 076401.
[10] The application of reed-vibration mechanical spectroscopy for liquids to detect chemical reactions of an acrylic structural adhesive
Wei Lai (卫来), Zhou Heng-Wei (周恒为), Zhang Li (张丽), Huang Yi-Neng (黄以能). Chin. Phys. B, 2013, 22(9): 096201.
[11] Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism
Lu Ming-Ming (卢明明), Yuan Jie (袁杰), Wen Bo (温博), Liu Jia (刘甲), Cao Wen-Qiang (曹文强), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2013, 22(3): 037701.
[12] The effects of current-path patterns on magnetotransport in spatially-confined structures by Monte Carlo simulation
Wu Jian-Chun(伍建春), Sun Hua(孙华), and Li Zhen-Ya(李振亚). Chin. Phys. B, 2009, 18(11): 5061-5065.
[13] A percolation study of RTS noise in deep sub-micron MOSFET by Monte Carlo simulation
Ma Zhong-Fa (马仲发), Zhuang Yi-Qi (庄奕琪), Du Lei (杜磊), Wei Shan (魏珊). Chin. Phys. B, 2005, 14(4): 808-811.
No Suggested Reading articles found!