Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094301    DOI: 10.1088/1674-1056/ab3447
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Using Helmholtz resonator arrays to improve dipole transmission efficiency in waveguide

Liwei Wang(王力维)1, Li Quan(全力)2, Feng Qian(钱枫)1,3, Xiaozhou Liu(刘晓宙)1
1 Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78713, USA;
3 College of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500, China
Abstract  

It is well known that the radiation efficiency of an acoustic dipole is very low, increasing the radiation efficiency of an acoustic dipole is a difficult task, especially in an ordinary waveguide. In addition, current acoustic superlenses all utilize in-phase sources to do the super-resolution imaging, it is almost impossible to realize super-resolution imaging of an acoustic dipole. In this paper, after using the Helmholtz resonator arrays (HRAs) which are placed at the upper and lower surfaces of the waveguide, we observe a large dipole radiation efficiency at the certain frequency, which gives a method to observe an acoustic dipole in the far field and offers a novel model which is promising to realize the superlens with a source of an acoustic dipole. We discuss how the arrangement of HRAs affects the transmission of the acoustic dipole.

Keywords:  dipole source      waveguide      Helmholtz resonator arrays      double-negative area  
Received:  04 June 2019      Revised:  08 July 2019      Accepted manuscript online: 
PACS:  43.40.-r (Structural acoustics and vibration)  
  43.58.Ls (Acoustical lenses and microscopes)  
  43.40.+s (Structural acoustics and vibration)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303702), State Key Program of the National Natural Science Foundation of China (Grant No. 11834008), the National Natural Science Foundation of China (Grant No. 11774167), State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201809), Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and AQSIQ Technology R&D Program, China (Grant No. 2017QK125).

Corresponding Authors:  Xiaozhou Liu     E-mail:  xzliu@nju.edu.cn

Cite this article: 

Liwei Wang(王力维), Li Quan(全力), Feng Qian(钱枫), Xiaozhou Liu(刘晓宙) Using Helmholtz resonator arrays to improve dipole transmission efficiency in waveguide 2019 Chin. Phys. B 28 094301

[1] King W F 1977 Phys. Lett. A 62 282
[2] Li Y L, Ma Q Y and Zhang D 2011 Chin. Phys. B 20 084302
[3] Guan C M and Ping S 2016 Sci. Adv. 2 e1501595
[4] Feng Q, Li Q, Li W W, Xiao Z L and Xiu F G 2016 Chin. Phys. B 25 24301
[5] Groby J P, Lagarrigue C, Brouard B, Dazel O, Tournat V and Nennig B 2015 J. Acoust. Soc. Am. 137 273
[6] Li Q, Feng Q, Liu X and Gong X 2016 J. Acoust. Soc. Am. 139 3373
[7] Yan F L, Hui J, Lin K Z, Yong S S and Dian L Y 2016 Phys. Lett. A 380 2322
[8] Quan L, Zhong X, Liu X, Gong X and Johnson P A 2014 Nat Commun. 5 3188
[9] Quan L, Qian F, Liu X and Gong X 2015 J. Acoust. Soc. Am. 138 782
[10] Quan L, Qian F, Liu X, Gong X and Johnson P A 2015 Phys. Rev. B 92 104105
[11] Ying C, Jun Y X and Xiao J L J 2008 Phys. Rev. B 77 045134
[12] Ning L, Wang Y Z and Wang Y S 2019 Int. J. Mech. Sci. 153-154 287
[13] Baz A M 2010 ASME J. Vib. Acoust. 132 041011
[14] Shen H J, Paidoussis M P, Wen J H, Yu D L, Cai L and Wen X S 2012 J. Phys. D:Appl. Phys. 45 285401
[15] Akl W and Baz A 2011 Smart Mater. Struct. 20 125010
[16] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 Nat. Phys. 7 52
[17] Kaina N, Lemoult F, Fink M and Lerosey G 2015 Nature 525 77
[18] Hou Y L, Ying C and Xiao J L 2017 Appl. Phys. Lett. 111 143502
[19] Dylan L andZhao W L 2012 Nat Commun. 3 1205
[20] Park J J, Park C M, Lee K J B and Lee S H 2015 Appl. Phys. Lett. 106 051901
[21] ohn B P 2000 Phys. Rev. Lett. 85 3966
[22] Viktor A P, Evgenii E N 2005 Opt. Lett. 30 75
[23] Chen S and Yun J 2014 Appl. Phys. A 117 1885
[24] Xi S Y, Jing Y, Gao K Y, Lin H P and Ning W 2015 Appl. Phys. Lett. 107 193505
[25] Ingard U 1953 Journal of the Acoustical Society of America 25 1037
[26] Nicholas F, Dong J X, Jiang Y X, Muralidhar A, Werayut S, Cheng S and Xiang Z 2006 Nat. Mater. 5 452
[27] Morse P M and Ingard U K 1968 Theoretical Acoustics (New York:McGraw-Hill) p. 467
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[9] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[10] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[11] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
No Suggested Reading articles found!